Меню
Главная
УСЛУГИ
Авторизация/Регистрация
Реклама на сайте
Системы управления базами данных с набором алгоритмов Data MiningАвтономные настольные пакеты программ для Data MiningИнтеллектуальный анализ, или Data MiningМониторинг средств массовой информацииПакет Unigraphics корпорации Electronic Data Systems
Предметные и прикладные информационные технологииПравовые режимы информационных технологий, коммуникационных сетейСвойства и классификация информационных технологийИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ: ПОНЯТИЯ, ТЕРМИНОЛОГИЯ, КЛАССИФИКАЦИЯСЕТЕВЫЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
 
Главная arrow Информатика arrow Информационные системы и технологии в экономике и управлении
< Предыдущая   СОДЕРЖАНИЕ   Следующая >

Средства Data Mining (DM)

Средства DM подразумевают извлечение ("раскопку", "добычу") данных и направлены на выявление отношений между информацией, хранящейся в цифровых базах данных предприятия, которые аналитик может использовать для построения моделей, позволяющих количественно оценить степень влияния интересующих его факторов. Кроме того, такие средства могут быть полезны для построения гипотез о возможном характере отношений информации в цифровых базах данных предприятия.

Технология добычи текстовых данных (Text Mining - ТМ) представляет собой набор инструментов, позволяющий анализировать большие наборы информации в поисках тенденций, шаблонов и взаимосвязей, способные помочь в принятии стратегических решений.

Технология Image Mining (IM) содержит средства для распознавания и классификации различных визуальных образов, хранящихся в базах данных предприятия или полученных в результате оперативного поиска из внешних информационных источников.

Для решения проблем по обработке и хранению всех данных используют следующие подходы:

1) создание нескольких систем резервного копирования или одной системы распределенного документооборота, которые позволяют сохранять данные, но обладают медленным доступом к сохраненной информации по запросу пользователя;

2) построение интернет-систем, обладающих высокой гибкостью, но не приспособленных для реализации поиска и хранения текстовых документов;

3) внедрение интернет-порталов, которые хорошо ориентированны на запросы пользователей, но не обладают описательной информацией относительно загружаемых в них текстовых данных.

Системы обработки текстовой информации, свободные от перечисленных выше проблем, можно разделить на две категории: системы лингвистического анализа и системы анализа текстовых данных.

Основными элементами технологии Text Mining являются:

o суммаризация (summarization);

o тематический поиск (feature extraction);

o кластеризация (clustering);

o классификация (classification);

o ответ на запросы (question answering);

o тематическое индексирование (thematic indexing);

o поиск по ключевым словам (keyword searching);

o создание и поддержка офтаксономии (oftaxonomies) и тезаурусов (thesauri).

К программным продуктам, реализующим технологию Text Mining, относятся:

IBM Intelligent Miner for Text - набор отдельных утилит, запускаемых из командной строки, или скиптов, независимых друг от друга (основной упор делается на механизмы добычи данных - information retrieval);

Oracle InterMedia Text - набор, интегрированный в СУБД, позволяющий наиболее эффективно работать с запросами пользователей (позволяет работать с современными реляционными СУБД в контексте сложного многоцелевого поиска и анализа текстовых данных);

Megaputer Text Analyst - набор встраиваемых в программу СОМ - объектов, предназначенных для решения задач Text Mining.

Интеллектуальные информационные технологии

Сегодня в области автоматизации управления анализ информации доминирует на предварительной стадии подготовки решений - обработки первичной информации, декомпозиции проблемной ситуации, что позволяет познать лишь фрагменты и детали процессов, а не ситуацию в целом. Для преодоления этого недостатка надо научиться строить базы знаний, используя опыт лучших специалистов, а также генерировать недостающие знания.

Использование информационных технологий в различных сферах человеческой деятельности, экспоненциальный рост объемов информации и необходимость оперативно реагировать в любых ситуациях потребовали поиска адекватных путей решения возникающих проблем. Эффективнейшим из них является путь интеллектуализации информационных технологий.

Под интеллектуальными информационными технологиями (ИТТ) обычно понимают такие информационные технологии, в которых предусмотрены следующие возможности:

o наличие баз знаний, отражающих опыт конкретных людей, групп, обществ, человечества в целом, при решении творческих задач в определенных сферах деятельности, традиционно считавшихся прерогативой интеллекта человека (например, такие плохо формализуемые задачи, как принятие решений, проектирование, извлечение смысла, объяснение, обучение и т.п.);

o наличие моделей мышления на основе баз знаний: правил и логических выводов, аргументации и рассуждения, распознавания и классификации ситуаций, обобщения и понимания и т.п.;

o способность формировать вполне четкие решения на основе нечетких, нестрогих, неполных, недоопределенных данных;

o способность объяснять выводы и решения, т.е. наличие механизма объяснений;

o способность к обучению, переобучению и, следовательно, к развитию.

Технологии неформализованного поиска скрытых закономерностей в данных и информации Knowledge Discovery (KD) базируются на новейших технологиях формирования и структурирования информационных образов объектов, что ближе всего лежит к принципам обработки информации интеллектуальными системами.

Информационные технологии поддержки процесса принятия решений Decision Support (DS) представляют собой оболочки экспертных систем или специализированные экспертные системы, которые предоставляют возможность аналитикам определять отношения и взаимосвязи между информационными структурами в базах структурированной информации предприятия, а также прогнозировать возможные результаты принятия решений.

Тенденции развития ИИТ. Системы связи и коммуникаций. Глобальные информационные сети и ИИТ могут в корне поменять наши представления о компаниях и самом умственном труде. Присутствие сотрудников на рабочем месте станет практически не нужным. Люди могут работать дома и взаимодействовать друг с другом при необходимости через сети. Известен, например, успешный опыт создания новой модификации самолета "Боинг-747" распределенным коллективом специалистов, взаимодействующих по Интернету. Местонахождение участников каких-либо разработок будет играть все меньшую роль, зато возрастает значение уровня квалификации участников. Другая причина, определившая бурное развитие И ИТ, связана с усложнением систем коммуникации и решаемых на их основе задач. Потребовался качественно новый уровень "интеллектуализации" таких программных продуктов, как системы анализа разнородных и нестрогих данных, обеспечения информационной безопасности, выработки решений в распределенных системах и т.п.

Образование. Уже сегодня дистанционное обучение начинает играть важную роль в образовании, а внедрение ИИТ позволит существенно индивидуализировать этот процесс сообразно с потребностями и способностями каждого обучаемого.

Быт. Информатизация быта уже началась, но с развитием ИИТ появятся принципиально новые возможности. Постепенно компьютеру будут передаваться все новые функции: контроль над состоянием здоровья пользователя, управление бытовыми приборами, такими как увлажнители, освежители воздуха, обогреватели, ионизаторы, музыкальные центры, средства медицинской диагностики и т.п. Другими словами, системы станут еще и диагностами состояния человека и его жилища. Будет обеспечено комфортное информационное пространство в помещениях, где информационная среда станет частью окружающей человека среды.

Перспективы развития ИИТ. Представляется, что в настоящее время ИИТ подошли к принципиально новому этапу своего развития. Так, за последние 10 лет существенно расширились возможности ИИТ за счет разработки новых типов логических моделей, появления новых теорий и представлений. Узловыми точками в развитии ИИТ считаются:

o переход от логического вывода к моделям аргументации и рассуждения;

o поиск релевантных знаний и порождение объяснений;

o понимание и синтез текстов;

o когнитивная графика, т.е. графическое и образное представление знаний;

o мультиагентные системы;

o интеллектуальные сетевые модели;

o вычисления, основанные на нечеткой логике, нейронных сетях, генетических алгоритмах, вероятностных вычислениях (реализуемых в различных комбинациях друг с другом и с экспертными системами);

o проблема метазнаний.

Новой парадигмой создания перспективных ИИТ стали мультиагентные системы. Здесь предполагается, что агент - это самостоятельная интеллектуальная система, имеющая свою систему целеполагания и мотивации, свою область действий и ответственности. Взаимодействие между агентами обеспечивается системой более высокого уровня - метаинтеллектом. В мультиагентных системах моделируется виртуальное сообщество интеллектуальных агентов - объектов, которые автономны, активны, вступают в различные социальные отношения - кооперации и сотрудничества (дружбы), конкуренции, соревнования, вражды и т.п. Социальный аспект решения современных задач и есть фундаментальная особенность концептуальной новизны передовых интеллектуальных технологий - виртуальных организаций, виртуального общества.

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика