Меню
Главная
УСЛУГИ
Авторизация/Регистрация
Реклама на сайте
Единые принципы построения систем допусков и посадокПринципы построения и использования параллельных вычислительных системОрганизационно-правовые принципы построения налоговой системыПринципы построения и элементы налоговой системыОБЩИЕ ПРИНЦИПЫ ПОСТРОЕНИЯ СИСТЕМ УПРАВЛЕНИЯ КАЧЕСТВОМ
Международная система единиц (SI)Грузовая единица - элемент сквозного логистического процессаРоль национальных валют, международных валютных единиц и золота в...Абсолютные и сравнительные преимущества международной специализации и...Патентная система налогообложения: преимущества и ограничения
 
Главная arrow Товароведение arrow Метрология, стандартизация и сертификация
< Предыдущая   СОДЕРЖАНИЕ   Следующая >

Принципы построения Международной системы единиц

Первая система единиц физических величин, хотя она и не являлась еще системой единиц в современном понимании, была принята Национальным собранием Франции в 1791 г. Она включала в себя единицы длины, площади, объема, вместимости и массы, основными из которых были две единицы: метр и килограмм.

Систему единиц как совокупности основных и производных единиц впервые в 1832 г. предложил немецкий ученый К. Гаусс. Он построил систему единиц, где за основу принял единицы длины (миллиметр), массы (миллиграмм) и времени (секунда), и назвал ее абсолютной системой.

С развитием физики и техники появились другие системы единиц физических величин, базирующиеся на метрической основе. Все они были построены по принципу, разработанному Гауссом. Эти системы нашли применение в разных отраслях науки и техники. Разработанные в то время измерительные средства градуированы в соответствующих единицах, находят применение и в настоящее время.

Многообразие единиц измерения физических величин и систем единиц осложняло их применение. Одни и те же уравнения между величинами имели различные коэффициенты пропорциональности. Свойства материалов, процессов выражались различными числовыми значениями. Международный комитет по мерам и весам выделил из своего состава комиссию по разработке единой Международной системы единиц. Комиссия разработала проект Международной системы единиц, который был утвержден XI Генеральной конференцией по мерам и весам в I960 г. Принятая система была названа Международной системой единиц, сокращенно СИ (SI - начальные буквы наименования System International).

Учитывая необходимость охвата Международной системой единиц всех областей науки и техники, в ней в качестве основных выбраны семь единиц. В механике такими являются единицы длины, массы и времени, в электричестве добавляется единица силы электрического тока, в теплоте - единица термодинамической температуры, в оптике - единица силы света, в молекулярной физике, термодинамике и химии - единица количества вещества. Эти семь единиц соответственно: метр, килограмм, секунда, ампер, Кельвин, кандела и моль - и выбраны в качестве основных единиц СИ (табл. 2.1).

Единица длины (метр) - длина пути, проходимого светом в вакууме за 1/299 792 458 долю секунды.

Единица массы (килограмм) - масса, равная массе международного прототипа килограмма.

Единица времени (секунда) - продолжительность 9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Единица силы электрического тока (ампер) - сила неизменяющегося тока, который, проходя по двум нормальным прямолинейным проводникам бесконечной длины и ничтожно малой площади круглого поперечного сечения, расположенным на расстоянии I м один от другого в вакууме, вызывает между проводниками силу взаимодействия, равную 2- Ю~7Н на каждый метр длины.

2.1. Основные единицы СИ

Основные единицы СИ

Единица термодинамической температуры (Кельвин) - 1/273,16 термодинамической температуры тройной точки воды. Допускается использовать также шкалу Цельсия.

Единица силы света (кандела) - сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Единица количества вещества (моль) - количество веществ системы, содержащей столько же структурных элементов, сколько атомов содержится вуглероде-12 массой 0,012 кг.

Основные единицы Международной системы имеют удобные для практических целей размеры и широко применяются в соответствующих областях измерений.

Международная система единиц содержит также две дополнительные единицы: для плоского угла - радиан и для телесного угла - стерадиан (табл. 2.1).

Радиан (рад) - единица плоского угла, равная углу между двумя радиусами окружности, длина дуги между которыми равна радиусу. В градусном исчислении I рад = 57° 1744,8".

Стерадиан (ср) - единица, равная телесному углу с вершиной в центре сферы, вырезающему на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы. Телесный угол £} измеряют косвенно - путем измерения плоского угла а при вершине конуса с последующим вычислением по формуле

Телесному углу в I ср соответствует плоский угол, равный 65°32', углу л-ср - плоский угол 120°, углу 2яср - плоский угол 180°. Дополнительные единицы используются только для теоретических расчетов и образования производных единиц, например угловой скорости, углового ускорения. Для измерения углов применяют угловые градусы, минуты и секунды. Приборов для измерения углов в радианах нет.

Угловые единицы не могут быть введены в число основных, гак как это вызвало бы затруднение в трактовке размерностей величин, связанных с вращением (дуги окружности, площади круга, работы пары сил и т. д.). Вместе с тем угловые единицы нельзя считать и производными, так как они не зависят от выбора основных единиц. Действительно, при любых единицах длины размеры радиана и стерадиана остаются неизменными.

Из семи основных единиц и двух дополнительных в качестве производных выводят единицы для измерений физических величин во всех областях науки и техники.

В решениях XI и XII Генеральных конференций по мерам и весам даны 33 производные единицы СИ. Примеры производных единиц, имеющих собственные наименования, приведены в табл. 2.2.

Важным принципом, который соблюден в Международной системе единиц, является ее когерентность (согласованность). Так, выбор основных единиц системы обеспечил полную согласованность механических и электрических единиц. Например, ватт - единица механической мощности (равный джоулю в секунду) равняется мощности, выделяемой электрическим током силой I ампер при напряжении I вольт.

В СИ, подобно другим когерентным системам единиц, коэффициенты пропорциональности в физических уравнениях, определяющих производные единицы, равны безразмерной единице.

Когерентные производные единицы Международной системы образуются с помощью простейших уравнений связи между величинами (определяющих уравнений), в которых величины приняты равными единицам СИ.

Например, единица скорости образуется с помощью уравнения, определяющего скорость прямолинейно и равномерно движущейся точки V=у, где V- скорость;/ - длина пройденного пути;/ - время. Подстановка вместо /, / и К их единиц СИ дает [ V = [/]/М = I м/с.

2.2. Производные единицы СИ, имеющие собственное наименование

Производные единицы СИ, имеющие собственное наименование

Следовательно, единицей скорости СИ является метр в секунду. Он равен скорости прямолинейно и равномерно движущейся точки, при которой эта точка за время / I с перемешается на расстояние 1 м.

Например, для образования единицы энергии используется уравнение Т = тУ где Т - кинетическая энергия; т - масса тела; V - скорость движения точки, то когерентная единица энергии СИ образуется следующим образом:

То есть единицей энергии в СИ является джоуль (равный ньютон-метру). Он равен кинетической энергии тела массой 2 кг, движущегося со скоростью I м/с.

В Международной системе единиц, как и в других системах единиц физических величин, важную роль играет размерность.

Размерностью называют символическое (буквенное) обозначение зависимости производных величин (или единиц) от основных.

Например, если какая-либо физическая величина выражается через длину L, массу М и время Г(являющихся основными величинами в системе единиц типа LMT) формулой X = f(L, М, 7), то можно показать, что результаты измерений будут независимы от выбора единиц в том случае, если функция/будет однородной функцией длины, массы и времени. Пусть X = LpM"Tr. Размерность величины А выражается формулой 6тХ= 11МЯТ где dim - сокращение от слова dimension - размерность.

Данная формула показывает, как производная величина связана с основными величинами, и называется формулой размерности.

Так как всякая величина может быть представлена как произведение ее числового значения {Л} на единицу Х X = {ЩХ, ее можно представить в виде {Х\Х = ЩР{М)Я{Т)Г1ЛРМЯТГ.

Равенство величин в этой формуле распадается на два равенства: равенство числовых значений

Размерность служит качественной характеристикой величины и выражается произведением степеней основных величин, через которые может быть определена.

Размерность не полностью отражает все качественные особенности величин. Встречаются различные величины, имеющие одинаковую размерность. Например, работа и момент силы, сила тока и магнитодвижущая сила и др.

Размерность играет важную роль при проверке правильности сложных расчетных формул в теории подобия и теории размерностей.

Преимущества Международной системы единиц

Основными преимуществами Международной системы единиц являются:

- унификация единиц физических величин на базе СИ. Для каждой физической величины устанавливается одна единица и система образования кратных и дольных единиц от нее с помощью множителей (табл. 2.3);

- система СИ является универсальной системой. Она охватывает все области науки, техники и отрасли экономики;

- основные и большинство производных единиц СИ имеют удобные для практического применения размеры. В системе разграничены единицы массы (килограмм) и силы (ньютон);

- упрощается запись уравнений и формул в различных областях науки и техники. В СИ для всех видов энергии (механической, тепловой, электрической и др.) установлена одна, общая единица - джоуль.

2.3. Множители и приставки для образования десятичных кратных и дольных единиц и их обозначение

Множители и приставки для образования десятичных кратных и дольных единиц и их обозначение

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Журналистика
Инвестирование
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Политэкономия
Право
Психология
Религиоведение
Риторика
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика