Мир сквозь призму синергетики — И. Р. Пригожий

Мы определили философскую сущность мира, основой которой является естественнонаучная картина бытия. Однако существуют полезные для философского осмысления и иные подходы к миропониманию. В частности, таким подходом является синергетика. Синергетика относительное молодое научное направление и взгляд его на сущность мира представляется интересным. Одним из основателей этого направления является И.Р. Пригожий.

Синергетика — теория случайностей, теория хаотических процессов, трактуемая как самоорганизация. Как она соотносится с диалектикой, каким образом идеалистическое и материалистическое восприятие мира уживается с синергетическим представлением о его происхождении — это вопросы, которые стоят осмысления. Смотря по-разному на мир, мы полнее отражаем в нём себя и его в себе.

Пригожий Илья Романович (1917-2003 гг.), учёный, мыслитель, философ, естествоиспытатель, специалист в области химии, физики, биологии. Лауреат Нобелевской премии по химии, коренной москвич. Родился в Москве 25 января 1917 г. в интеллигентной русской семье: отец — инженер-химик, мать — музыкант. Мама рано приобщила Илью к игре на пианино: ноты он научился читать раньше, чем слова. Семья, после Октябрьского 1917 г. большевистского переворота, не признав его, ещё несколько лет прожила в России, но в 1921 г. эмигрировала в Литву, затем перебралась в Германию. В 1929 г. поселилась в Бельгии. В молодости Илья интересовался историей и философией, однако будущее связывал с профессией концертирующего пианиста, но судьба распорядилась по-своему. Начальное и среднее образование он получал в школах Берлина и Брюсселя, в совершенстве владел немецким и французским языками. Затем изучал химию в Свободном университете Брюсселя, где увлёкся термодинамикой — наукой, связанной с тепловой и иными формами энергии. В 1939 г. получил степень бакалавра химических и физических наук. В 1941 г. защитил диссертацию на тему "О значении времени и превращениях в термодинамических системах", за которую через два года был удостоен докторской степени. В 1947 г. его избирают профессором физической химии в этом университете и он в течение 14 лет читает в нём курс физической химии. В 1962 г. Пригожина назначают директором Солвеевского международного института физики и химии в Брюсселе. В 1967 г. он основывает Центр статистической механики и термодинамики при Техасском университете в Остине. Пригожина назначают в нём директором и присваивают Центру его имя.

Он работает одновременно и в Брюсселе, и в Остине. В 1977 г. "за работы по термодинамике необратимых процессов, особенно за теорию диссипативных структур" Илье При гожи ну присуждается Нобелевская премия по химии. Согласно его взглядам направленность во времени является фундаментальным свойством всех систем: физических, химических, биологических и социальных; существует естественное стремление к хаосу, которое не ведёт к утрате гармонии; хаос конструктивен и создаёт новый порядок. За многочисленные работы по естественным, социальным и философским наукам он награждается рядом элитарных знаков: золотой медалью Сванте Аррениуса Шведской королевской академии наук (1969), медалью Баурка Британского химического общества (1972), медалью Котениуса Германской академии естествоиспытателей "Леопольдина" (1975), медалью Румфорда Лондонского королевского научного общества. И. Пригожий является иностранным членом Американской академии наук и искусств. Польского и Американского химических обществ и ряда других организаций. Ему присвоены почётные звания профессора университетов НьюКасл-АпонТайна, Пуатье, Чикаго, Бордо, Упсалы, Льежа, Экс-ан-Прованса, Джорджтауна, Кракова и Рио-де-Жанейро. Сам Илья Романович неоднократно бывал в России, читал лекции. В 2001 г. на заседании учёного совета ИГУ им. М.И. Ломоносова его ученику — профессору Солвеевсого института физики и химии, доктору Иоаннису Антониу был вручён диплом и медаль почётного профессора ИГУ. В России издана книга И. Пригожина "Время, хаос, квант", в соавторстве с И. Стенгерсом (1994).

Скончался Илья Романович, находясь в Центральном госпитале Брюсселя.

Прежде чем мы коснёмся взглядов И.Р. Пригожина в области синергетики, и на их основе понимания им картины мира, целесообразно коротко остановиться на историко-философских истоках понятия "хаос", которое и определило суть синергетики.

Понимание "хаоса" занимало предметное место уже в мировоззрении античных философов, в частности, Платона и его школы. Не вдаваясь в детали, отметим лишь два сформулированных им положения, сохраняющих своё значение при использовании понятия "хаос" в современной физике. По представлениям Платона и его учеников, хаос (в современном звучании этого слова) есть такое состояние системы, которое остаётся по мере устранения возможностей проявлений её свойств. С другой стороны, из системы, находящейся изначально в хаотическом состоянии, возникает всё, что составляет содержание мироздания. Роль созидающей силы — творца — Платон отводил Демиургу, который превратил изначальный хаос в космос. Таким образом, все существующие структуры порождаются из хаоса. Понятие "структура" у Платона является обобщённым: структура представляется им как некий вид организации и связи элементов системы, при этом может оказаться важным не сам конкретный вид элементов системы, а совокупность их взаимоотношений. В таком представлении, система, как целостный структурированный состав, им не виделась, потому и была "просто" хаотична. Платоновские размышления блестяще развил в XVIII в. И. Кант, философски определив суть происхождения Вселенной. Согласно его космогонической теории Вселенная из состояния хаоса, вследствие сил притяжения, приходит в упорядоченное состояние, представленное небесными телами, планетами. Позднее, исходя из античных представлений о системе и структуре в хаотическом единстве элементов, физики, понятия "хаос" и "хаотическое движение", сделали фундаментальными, однако полной определённости в них не внесли.

С учётом этих философских взглядов на процессы, объясняющие хаотическую природу мира, зарождались мысли и естественнонаучные работы И. Пригожина. Отметим в них принципиальные моменты, касающиеся основ термодинамики — раздела физики, изучающего наиболее общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями.

Принципы термодинамики были сформулированы в середине XIX в., после изобретения паровой машины, когда взаимодействие тепловой, электрической и механической работы (энергии) привлекло к себе значительный интерес. Согласно одной из версий первого начала (закона) термодинамики, представляющего собой принцип сохранения энергии, в любой закрытой системе энергия не исчезает и не возникает, а переходит из одной формы в другую. Второе начало термодинамики (закон возрастания энтропии) описывает тенденцию систем переходить из состояния большего к состоянию меньшего порядка. Энтропия — мера беспорядочности (разупорядоченности) системы. Чем больше разупорядоченность, тем выше энтропия. В XIX в. американский математик и физик Джозайя Уиллард Гиббс разработал теорию статистической термодинамики для обратимых систем в условиях равновесия. Профессор Теофил де Дондер — учитель И. Пригожина в Свободном университете и основатель Брюссельской школы термодинамики, сформулировал теорию неравновесных необратимых систем. Возникает вопрос: что собою представляет обратимое равновесие?

Примером обратимого равновесия может служить таяние кусочка льда при температуре, которая лишь немного превышает температуру замерзания воды. Энтропия этого кусочка льда повышается по мере того, как кристаллы льда на его поверхности тают, превращаясь в воду. Одновременно энтропия плёнки воды на поверхности льда понижается, поскольку тепло из неё забирается на таяние льда. Этот процесс можно сделать обратимым, понизив температуру системы до точки замерзания воды: вода на поверхности кристаллизируется, и энтропия льда понижается, а энтропия плёнки воды повышается. В каждом процессе (таяния и замерзания) при температуре замерзания воды или близкой к ней общая энтропия системы остаётся неизменной. Примером необратимой неравновесной системы может служить таяние кубика льда в стакане с водой при комнатной температуре. Энтропия кубика льда повышается до тех пор, пока не растают все кристаллы. По мере того как тепло поглощается сначала из всего объёма воды в стакане, а затем из окружающего воздуха, энтропия всей системы возрастает.

И. Пригожина прежде всего интересовали в термодинамике неравновесные специфические открытые системы, в которых либо материя, либо энергия, либо и то, и другое обмениваются с внешней средой в реакциях (разделение материи и энергии — синергетический подход Пригожина). При этом количество материи и количество энергии либо количество материи и количество энергии со временем увеличивается или уменьшается. Здесь читателям необходимо иметь в виду два важных методологических положения философии, которые интерпретированы Пригожиным по-своему. Во-первых, материя и энергия предстают у него как самостоятельные сущности, что в принципе невозможно, так как материя — это объективная реальность, а энергия (физическая, химическая, биотическая, социальная) — форма движения материи; во-вторых, в этом подходе искажается принцип сохранения материи в процессе изменения её форм.

Чтобы объяснить поведение систем, далёких от равновесия, Пригожий сформулировал теорию диссипативных структур. Считая, что неравновесность может служить источником организации и порядка, он представил диссипативные структуры в терминах математической модели с зависимыми от времени нелинейными функциями, которые описывают способность систем обмениваться материей и энергией с внешней средой и спонтанно себя рестабилизировать. Ставший теперь классическим пример диссипативной структуры в физической химии известен как нестабильность Бернарда. Такая структура возникает, когда слои легкоподвижной жидкой среды подогреваются снизу. При достаточно высоких температурных градиентах тепло передаётся через среду как обычно, и большое число молекул в жидкости образуют специфические геометрические формы, напоминающие живые клетки.

Было сделано предположение, что и общество так же, как биологическая среда, являет собой пример диссипативных и недиссипативных структур. В 1952 г. английский математик Алан М. Тьюринг первым предположил, что термодинамические нестабильности типа тех, какие были выдвинуты И. Пригожиным и его коллегами, характерны для самоорганизующихся систем. В 1960—1970-е гг. Пригожий развил созданную им теорию диссипативных структур и описал образование и развитие эмбрионов. Критические точки раздвоения в его математической модели соотносятся с точкой, в которой биологическая система в хаосе становится последовательной и стабилизированной. И. Пригожий предполагал, что его теории и математические модели систем, которые зависят от времени, могут быть применимы к эволюционным и социальным схемам, характеристикам автогужевого транспорта и деятельности в отношении использования природных ресурсов, а также к таким областям, как рост населения, метеорология и астрономия. Стало ясно, что фундаментальная проблема, которой занимался И. Пригожий, не имеет дисциплинарных границ, она и социальная, и более того — она философская. Однако в отношении её философского значения стоит быть осторожными, так как синергетика не обладает качеством всеобщности.

В своём творчестве И. Пригожий соотносил проблемы современной термодинамики с интерпретацией таких категорий как необратимость и время. Феномен необратимости он объяснял в рамках научной рациональности, используя как классическую, так и неклассическую методологию. В частности, он не считал, что для созидательной деятельности природы нужна "другая наука". Однако был убеждён, что наука находится в самом начале своего пути, и, что физика преодолевает ограничения, обусловленные её происхождением.

С предельно общих позиций, а именно с позиций расширения и более глубокого проникновения в суть используемых наукой методов Пригожий подошёл к реализации программы, которую он назвал "переоткрытие времени". Специалисты в области синергетики отмечали, что пригожинская формулировка законов природы включает в себя несводимые вероятностные представления, что подразумевает переход от гильбертова пространства к обобщённым пространствам. Поэтому в это описание вошёл целый класс неустойчивых хаотических систем, связываемых с понятием вероятностного времени, а, следовательно, и нарушением симметрии между прошлым и будущим, а класс устойчивых и симметричных во времени систем стал их предельным случаем.

При исследовании сущности времени И. Пригожий был солидарен по ряду позиций с известными историками — М. Блоком и Ф. Брорделем. Если Пригожий обстоятельно показывал, что физика должна отказаться от многих прежних методологических установок и в этом смысле "обновиться", то М. Блок высказывал аналогичное суждение по отношению к истории. Он отмечал, что, как серьёзное аналитическое знание, история ещё молода.

И. Пригожий уделял предметное внимание рассмотрению такого важного методологического вопроса как взаимосвязь старых и новых представлений в науке. Рассуждая в этом ключе, он показывал, что новые подходы к науке в ряде случаев могут быть осуществлены на базе своеобразного синтеза некоторых установок классики и более разносторонних и широких взглядов. Примером этому у него служила интерпретация такого понятия как "время Ляпунова". Он полагал, что "время Ляпунова" позволяет ввести внутренний "масштаб времени" для характеристики систем, т.е. интервал, в течение которого выражение "две одинаковые" (одни и те же) системы, соответствующие одним и тем же начальным условиям, сохраняют смысл. После достаточно продолжительного по сравнению со временем Ляпунова периода эволюции, память о начальном состоянии системы полностью утрачивается. В этом смысле хаотические системы характеризуются временным горизонтом, который определяется временем Ляпунова. Для того чтобы увеличить интервал времени, в течение которого мы можем предсказывать траекторию, необходимо сузить класс систем, называемых "одними и теми же".

Пригожий не предлагал отказаться от таких характеристик как тождественность, но показывал место этих характеристик в том или ином процессе, взаимосвязь этих характеристик в различных процессах, а также их взаимосвязь с новыми понятиями, например, таким как временной горизонт. Признавая сложность и многообразие свойств такого явления как время, Пригожий считал целесообразным не только осуществлять синтез новых и традиционных методов в той или иной науке, но и устанавливать тесные междисциплинарные контакты. При этом им было отмечено, что ни одна наука не может быть подменена другой. Пригожий по отношению к взаимосвязи физики и гуманитарного знания отмечал, что пример физики может прояснить, но не решать проблемы, стоящие перед людьми.

Согласно его мироощущениям, отметим, что синергетический подход предполагает один из моментов связи в системе мира, который может быть использован наряду с другими теоретическими объяснениями общей картины универсума и процессов, происходящих в нём. В частности, такие примеры уже есть, они обусловлены реальными хаотическими явлениями всколыхнувшими человечество в конце первой декады XXI столетия: имеется в виду экономический кризис, потрясший все страны планеты. Основываясь на синергетическом методе возможно производить математические расчёты, которые позволят реально прогнозировать экономические потрясения, цикличные по своему характеру. Цикличность экономических кризисов была обоснована ещё в первой четверти XX в. российским экономистом, профессором Московской сельскохозяйственной академии, директором Конъюнктурного института при Наркомфине (1920—1928 гг.) Н.Д. Кондратьевым (1892—1938 гг.), репрессированным большевиками за отстаивание своего открытия. Большевики не признавали возможность кризисов "социалистической экономики", а Кондратьев гениально предсказал объективный полувековой цикл экономических процессов: депрессия (хаос) — оживление — бурный подъём — спад — депрессия (хаос). Этому экономическому циклу коммунистические указы помешать не могут, так как он закономерен для любой политической системы. Впоследствии на концепции длинных волн экономического развития Кондратьева сформировалось целое направление в мировой науке, а протекание экономических кризисов подтвердило справедливость выводов П. Кондратьева. В современное время в МГУ им. М.В. Ломоносова создан Институт математических исследований сложных систем имени И.Р. Пригожина, в котором ведётся работа, позволяющая повысить точность и надёжность прогнозов развития экономики, в том числе и предвидения кризисов (хаоса). В основе этой работы — циклы Кондратьева. В своё время он не смог завершить разработку формулы хаоса (был расстрелян), а в настоящее время такая возможность появилась, так как на рубеже веков разработана математическая теория хаоса, позволяющая применить её к экономике, в том числе в целях точного прогнозирования кризисов.

 
< Пред   СОДЕРЖАНИЕ     След >