Средства защиты атмосферы

В тех случаях, когда реальные выбросы превышают ПДВ, необходимо в системе выброса использовать аппараты для очистки газов от примесей.

Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся: на пылеуловители (сухие, электрические, фильтры, мокрые); туманоуловители (низкоскоростные и высокоскоростные); аппараты для улавливания паров и газов (абсорбционные, хемосорбционные, адсорбционные и нейтрализаторы); аппараты многоступенчатой очистки (уловители пыли и газов, уловители туманов и твердых примесей, многоступенчатые пылеуловители). Их работа характеризуется рядом параметров. Основными из них являются эффективность очистки, гидравлическое сопротивление и потребляемая мощность.

Эффективность очистки

где свх и свых - массовые концентрации примесей в газе соответственно до и после аппарата.

В ряде случаев для пылей используется понятие фракционной эффективности очистки:

где свхі и свьш- - массовые концентрации г-й фракции пыли соответственно до и после пылеуловителя.

Для оценки эффективности процесса очистки также используют коэффициент проскока веществ К через аппарат очистки:

Как следует из формул (5.2) и (5.3), коэффициент проскока и эффективность очистки связаны соотношением К = - х.

Гидравлическое сопротивление аппаратов очистки Ар определяют как разность давлений газового потока на входе аппарата рвх и выходе рпых из него. Значение Ар находят экспериментально или рассчитывают по формуле

где с, - коэффициент гидравлического сопротивления аппарата; р и 1У- плотность и скорость газа соответственно в расчетном сечении аппарата.

Если в процессе очистки гидравлическое сопротивление аппарата изменяется (обычно увеличивается), то необходимо регламентировать его начальное Дрпач и конечное значение Аркон. При достижении Ар = Дркон процесс очистки нужно прекратить и провести регенерацию (очистку) аппарата. Последнее обстоятельство имеет принципиальное значение для фильтров. Для фильтров Дркон = (2+5) Д/>нач.

Мощность N побудителя движения газов определяется гидравлическим сопротивлением и объемным расходом О, очищаемого газа:

где £ - коэффициент запаса мощности, обычно к = 1,1+1,15; г|м - КПД передачи мощности от электродвигателя к вентилятору, обычно т|м = 0,92+0,95; г||{ - КПД вентилятора, обычно г|" = 0,65+0,8.

Широкое применение для очистки газов от частиц получили сухие пылеуловители - циклоны (рис. 5.2) различных типов (цилиндрические и конические). Газовый поток вводится в циклон через патрубок 2 по касательной к внутренней поверхности корпуса 7 и совершает вращательно-поступательное движение вдоль корпуса к бункеру 4. Под действием центробежной силы частицы ныли образуют на стенке циклона пылевой слой, который вместе с частью газа попадает в бункер. Отделение частиц пыли от газа, попавшего в бункер, происходит при повороте газового потока в бункере на 180°. Освободившись от ныли, газовый ноток образует вихрь и выходит

Схема циклона

Рис. 5.2. Схема циклона

из бункера, давая начало вихрю газа, покидающем)' циклон через выходную трубу 3. Для нормальной работы циклона необходима герметичность бункера. Если бункер негерметичен, то из-за подсоса наружного воздуха происходит вынос пыли с потоком через выходную трубу.

Для очистки больших масс газов применяют батарейные циклоны, состоящие из большого числа параллельно установленных циклонных элементов. Конструктивно они объединяются в один корпус и имеют общий подвод и отвод газа. Опыт эксплуатации батарейных циклонов показан, что эффективность очистки у таких циклопов несколько ниже эффективности отдельных элементов из-за перетока газов между циклонными элементами.

Для тонкой очистки газов от частиц и капельной жидкости применяют различные фильтры. Процесс фильтрования состоит в задержании частиц примесей на пористых перегородках при движении через них дисперсных сред. Принципиальная схема процесса фильтрования в пористой перегородке показана на рис. 5.3. Фильтр представляет собой корпус /, разделенный пористой перегородкой (фильтроэлементом) 2 на две полости. В фильтр поступают загрязненные газы, которые очищаются при прохождении фильтроэлемента. Частицы примесей оседают на входной части пористой перегородки, образуя на поверхности перегородки слой 3, и задерживаются в порах. Для вновь поступающих частиц этот слой

Схема фильтра

Рис. 5.3. Схема фильтра

становится частью фильтровой перегородки, что увеличивает эффективность очистки фильтра и перепад давления на фильтроэлементе. Осаждение частиц на поверхности пор фильтроэлемента происходит в результате совокупного действия эффекта касания, а также диффузного, инерционного и гравитационного эффектов.

Классификация фильтров основана на типе фильтровой перегородки, конструкции фильтра и его назначении, тонкости очистки и др.

По типу перегородки фильтры бывают: с зернистыми слоями (неподвижные, свободно насыпанные зернистые материалы, псевдоожиженные слои); с гибкими пористыми перегородками (ткани, войлоки, волокнистые маты, губчатая резина, пенополиуретан и др.); с полужесткими пористыми перегородками (вязаные и тканые сетки, прессованные спирали и др.); с жесткими пористыми перегородками (пористая керамика, пористые металлы и др.).

Электрическая очистка (электрофильтры) - один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах.

Аппараты мокрой очистки газов - мокрые пылеуловители - имеют широкое распространение, так как характеризуются высокой эффективностью очистки от мелкодисперсных пылей сс!ч> 0,3 мкм, а также возможностью очистки от пыли нагретых и взрывоопасных газов. Однако мокрые пылеуловители обладают рядом недостатков, ограничивающих область их применения: образование в процессе очистки шлама, что требует специальных систем для его переработки; вынос влаги в атмосферу и образование отложений в отводящих газоходах при охлаждении газов до температуры точки росы; необходимость создания оборотных систем подачи воды в пылеуловитель.

Аппараты мокрой очистки работают по принципу осаждения частиц пыли на поверхность либо капель, либо пленки жидкости. Осаждение частиц пыли на жидкость происходит под действием сил инерции и броуновского движения.

Среди аппаратов мокрой очистки с осаждением частиц пыли па поверхность капель на практике более применимы скрубберы Вентури (рис. 5.4). Основная часть скруббера сопло Вентури 2. В его конфузорную часть подводится запыленный поток газа и через центробежные форсунки / - жидкость на орошение. В конфузорной части сопла происходит разгон газа от входной скорости г = 15+20 м/с) до скорости в узком сечении сопла 80-200 м/с и более. Процесс осаждения пыли на капли жидкости обусловлен массой жидкости, развитой поверхностью капель и высокой относительной скоростью частиц жидкости и пыли в конфузорной части сопла. Эффективность очистки в значительной степени зависит от равномерности распределения жидкости по сечению конфузорной части сопла. В диффузорной части сопла поток тормозится до скорости 15-20 м/с и подается в каплеуловитель 3. Каплеуловитель обычно выполняют в виде прямоточного циклона.

Скрубберы Вентури обеспечивают высокую эффективность очистки аэрозолей при начальной концентрации примесей до 100 г/м3. Они также широко используются в системах очистки газов от туманов. Эффективность очистки воздуха

Схема скруббера Вентури

Рис. 5 4. Схема скруббера Вентури

от тумана со средним размером частиц более 0,3 мкм достигает 0,999, что вполне сравнимо с высокоэффективными фильтрами.

К мокрым пылеуловителям относят и барботажно-пенные пылеуловители (рис. 5.5), в которых газ на очистку поступает под решетку 2, проходит через отверстия в решетке и, барботируя через слой жидкости и пены очищается от пыли путем осаждения частиц на внутренней поверхности газовых пузырей.

Схема барботажно-пенного пылеуловителя

Рис. 5.5. Схема барботажно-пенного пылеуловителя

Схема фильтрующего элемента низкоскоростного туманоуловителя

Рис. 5.6. Схема фильтрующего элемента низкоскоростного туманоуловителя

Для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей используют волокнистые фильтры - туманоуловители (рис. 5.6), принцип действия которых основан па осаждении капель на поверхности пор с последующим стенанием жидкости по волокнам в нижнюю часть туманоуловителя. Осаждение капель жидкости происходит под действием броуновской диффузии или инерционного механизма отделения частиц загрязнителя от газовой фазы на фильтроэлементах.

Метод абсорбции - очистка газовых выбросов от газов и паров - основан на поглощении последних жидкостью. Для этого используют абсорберы. Решающим условием для применения метода абсорбции является растворимость паров или газов в абсорбенте. Так, для удаления из технологических выбросов аммиака, хлоро- или фтороводорода целесообразно применять в качестве абсорбента воду. Для высокоэффективного протекания процесса абсорбции необходимы специальные конструктивные решения. Они реализуются в виде насадочных башен (рис. 5.7), форсуночных барботажно-пенных и других скрубберов.

Схема насадочной башни:

Рис. 5.7. Схема насадочной башни:

1 - насадка; 2 - разбрызгиватель

Работа хемосорберов основана на поглощении газов и паров жидкими или твердыми поглотителями с образованием малорастворимых или малолетучих химических соединений. Основными аппаратами для реализации процесса являются насадочные башни, барботажно-пенные аппараты, скрубберы Вентури и т.п. Хемосорбция - один из распространенных методов очистки отходящих газов от оксидов азота и паров кислот. Эффективность очистки от оксидов азота составляет 0,17-0,86 и от паров кислот - 0,95.

Метод адсорбции основан на способности некоторых тонкодисперсных твердых тел селективно извлекать и концентрировать на своей поверхности отдельные компоненты газовой смеси. Для этого метода используют адсорбенты. В качестве адсорбентов, или поглотителей, применяют вещества, имеющие большую площадь поверхности на единицу массы. Так, удельная поверхность активированных углей достигает 101-106 и1/кг. Их применяют для очистки газов от органических паров, удаления неприятных запахов и газообразных примесей, содержащихся в незначительных количествах в промышленных выбросах, а также летучих растворителей и целого ряда других газов. В качестве адсорбентов применяют также простые и комплексные оксиды (активированный глинозем, силикагель, активированный оксид алюминия, синтетические цеолиты или молекулярные сита), которые обладают большей селективной способностью, чем активированные угли.

Конструктивно адсорберы выполняют в виде емкостей, заполненных пористым адсорбентом, через который фильтруется поток очищаемого газа. Адсорберы применяют для очистки воздуха от паров растворителей, эфира, ацетона, различных углеводородов и т.п. Адсорберы нашли широкое применение в респираторах и противогазах. Патроны с адсорбентом следует использовать строго в соответствии с условием эксплуатации, указанным в паспорте респиратора или противогаза.

Термическая нейтрализация основана на способности горючих газов и паров, входящих в состав вентиляционных или технологических выбросов, сгорать с образованием менее токсичных веществ. Для этого метода используют нейтрализаторы. Различают три схемы термической нейтрализации: прямое сжигание; термическое окисление; каталитическое дожигание.

Прямое сжигание используют в тех случаях, когда очищаемые газы обладают значительной энергией, достаточной для поддержания горения. Примером такого процесса является факельное сжигание горючих отходов. Так нейтрализуют циановодород в вертикально направленных факелах на нефтехимических заводах. Разработаны схемы камерного сжигания отходов. Такие дожигатели можно использовать для нейтрализации паров токсичных горючих или окислителей при их сдувах из емкостей.

Термическое окисление (рис. 5.8) находит применение в тех случаях, когда очищаемые газы имеют высокую температуру, но не содержат достаточно кислорода, или когда концентрация горючих веществ незначительна и недостаточна для поддержания пламени.

В первом случае процесс термического окисления проводят в камере с подачей свежего воздуха (дожигание оксида углерода и углеводородов), а во втором - при подаче дополнительно природного газа.

Каталитическое дожигание используют для превращения токсичных компонентов, содержащихся в отходящих газах, в нетоксичные или менее токсичные путем их контакта с катализаторами. Для реализации процесса необходимо кроме применения катализаторов поддержание таких параметров газового потока, как температура и скорость газов.

Схема установки для термического окисления:

Рис, 5.8. Схема установки для термического окисления:

7 - входной патрубок; 2 - теплообменник; 3 - горелка; 4 - камера; 5 - выходной патрубок

В качестве катализаторов используют платину, палладий, медь и др. Температуры начала каталитических реакций газов и паров изменяются в широких пределах - 200-400 °С. Объемные скорости процесса каталитического дожигания обычно устанавливают в пределах 2000-6000 ч (объемная скорость - отношение скорости движения газов к объему катализаторной массы).

Каталитические нейтрализаторы применяют для обезвреживания оксида углерода, летучих углеводородов, растворителей, отработавших газов и т.п.

Термокаталитические реакторы с электроподогревом типа ТКРВ разработаны Дзержинским филиалом НИИОГАЗа Они предназначены для очистки газовых выбросов сушильных камер окрасочных линий от органических веществ, а также других технологических производств.

Каталитическая нейтрализация отработавших газов ДВС па поверхности твердого катализатора происходит за счет химических превращений (реакции окисления или восстановления), в результате которых образуются безвредные или менее вредные для окружающей среды и здоровья человека соединения.

Для высокоэффективной очистки выбросов необходимо применять аппараты многоступенчатой очистки. В этом случае очищаемые газы последовательно проходят несколько автономных аппаратов очистки или один агрегат, включающий несколько ступеней очистки. В системе последовательно соединенных аппаратов общая эффективность очистки Л = (1 - лОО - п.2)" (1" чД гае Л1> Ч2> ooo> Пп ~ эффективность очистки 1-, 2- и и-го аппаратов.

Такие решения находят применение при высокоэффективной очистке газов от твердых примесей, при одновременной очистке от твердых и газообразных примесей, при очистке от твердых примесей и капельной жидкости и т.п.

 
< Пред   СОДЕРЖАНИЕ     След >