Вот она, моя «капсула»!

«Капсула» обретает не только плоть, но и душу...

Быстрее крутить нельзя

Все, что я прочел про маховики, все, что продумал за это время, помогло мне поверить в большие возможности этих накопителей энергии. Однако повысить плотность энергии маховика в 100 раз - дело нешуточное. Что же мешает решить эту задачу? Попробуем разобраться.

Швейцарский гиробус проходил до остановки 6 км. Четыре из них он шел с приличной скоростью, вполне вписываясь в городское движение. Но почему не больше? Почему, например, не 20 км, что позволило бы открыть в городах линии маховичных автобусов без двигателя и без горючего?

Чтобы пройти впятеро больший путь, гиробус должен запасти во столько же раз больше энергии. Для этого совершенно не обязательно крутить маховик в пять раз быстрее, достаточно увеличить частоту вращения в 2,24 раза, то есть нужно разогнать маховик гиробуса до 6-7 тыс. оборотов в минуту. Казалось бы, чего проще? А вот ученые утверждают, что это совсем не так просто.

Обычно опыты с маховиками проводят на специальном стенде, помещенном глубоко под землей. Маховик там подвешивают в особой камере, из которой выкачивают воздух. Крутят маховик воздушной

турбиной, если он легкий, или мощным электромотором, если он тяжелый, как маховик гиробуса.

До 4-5 тыс. оборотов в минуту маховик сохраняет свои исходные размеры — если его остановить и измерить самыми точными приборами, все будет как прежде. Но уже при частоте вращения, близкой к 5 тыс. оборотов в минуту, маховик как бы «раздается» в стороны, его диаметр сильно увеличивается, и после остановки маховик не возвращается к прежним размерам. Чем это вызвано?

Из физики известно, что каждое массивное тело стремится либо двигаться равномерно и прямолинейно, либо находиться в покое. При вращении маховика сила сцепления его частиц, определяющая прочность данного материала, заставляет эти частицы сворачивать со своего «естественного» прямолинейного пути и «ходить по кругу». И частицы начинают «растягивать» маховик, пытаясь его разорвать, что дало бы им возможность двигаться равномерно и прямолинейно.

Теперь находиться вблизи маховика чрезвычайно опасно. Совсем небольшого увеличения скорости вращения может оказаться достаточно, чтобы маховик вдруг резко вытянулся и разорвался, как точильный круг. Только если осколки точильного круга легко удерживаются тоненькими защитными кожухами, то осколки маховика, массой по полтонны (а маховики почему-то чаще всего разрываются на три части), способны наделать много бед. Я слышал, что при разрыве маховика в подвале одной старой фабрики осколок пробил все междуэтажные перекрытия и вылетел наружу, а уже падая, еще раз пробил крышу.

Маховик гиробуса в момент разрыва обладает энергией, которой хватило бы для пробега машины на 12-18 км. Но не доводить же маховик каждый раз до опасного предела. Поэтому, как правило, прочность маховика используют всего на 1/3, что во столько же раз снижает его энергоемкость, а стало быть, и пробег гиробуса. Вот откуда те самые 4-6 км, о которых упоминалось выше.

Итак, по каким причинам нельзя накопить в обычном маховике больше энергии? Во-первых, это малая прочность материала, из которого он изготовлен. Крупные отливки или поковки даже из лучших сортов стали не слишком прочны. В таких изделиях невозможно избежать мельчайших дефектов, сильно уменьшающих прочность всего маховика. Во-вторых, чем прочнее литой или кованый маховик, тем опаснее последствия в случае его разрыва, и тем больше запас прочности следует закладывать при его проектировании.

«А что, если изменить форму маховика? - подумал я. — Например, разместить всю массу на периферии, превратив маховик в тяжелый обод, связанный с центральной частью тонкими спицами, как в велосипедном колесе?»

Оказывается, специалисты уже это сделали. По сравнению с кругом древнего гончара и впрямь получилось лучше. Такой маховик накапливал энергии в каждом килограмме своей массы раза в полтора больше. Еще лучше накапливал энергию маховик в виде диска без отверстия, но к нему трудно крепить вал. Однако потом точные расчеты показали, что выгоднее помещать массу не дальше от центра, а, наоборот, ближе к центру, вследствие чего появились маховики, тонкие по краям и утолщающиеся к середине, - диски «равной прочности».

Как это ни удивительно, но энергии они могли накопить в два раза больше, чем обод со спицами, и в три раза больше, чем гончарный круг, при той же массе маховика.

Так я пришел к важному для себя заключению: энергия каждого килограмма массы маховика зависит от его формы и прочности! Уже позже, по окончании института, я доказал математически существование этой зависимости, но еще раньше, в школьные годы, подсчитал, что если при изменении формы маховика — от самой худшей к самой лучшей — энергия возрастет незначительно, максимум в три раза, то при многократном повышении прочности во столько же раз увеличится и плотность энергии, причем это увеличение ничем не ограничено. Правда, тут получался порочный круг. Непрочный, например глиняный, маховик накапливает мало энергии, но разрыв его не так уж опасен, а прочный, скажем, стальной, может накопить большую энергию, однако разрыв его столь опасен, что приходится заботиться о повышении запаса прочности. А это опять-таки равносильно снижению прочности.

Конструкторам маховиков никак не удавалось вырваться из этого замкнутого круга, поэтому маховики играли вторую, если не третью, роль среди накопителей энергии...

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >