Хроматография. Виды анализаторов

Хроматография (от греч. chroma, chromatos — цвет, краска) — физико-химический метод разделения и анализа смесей, основанный на распределении их компонентов между двумя фазами — неподвижной и подвижной (элюент), протекающей через неподвижную. Хроматографический анализ является критерием однородности вещества. Если каким-либо хроматографическим способом анализируемое вещество не разделилось, то его считают однородным (без примесей).

Принципиальным отличием хроматографических методов от других физико-химических методов анализа является возможность разделения близких по свойствам веществ. После разделения компоненты анализируемой смеси можно идентифицировать (установить природу) и количественно определить (массу, концентрацию) любыми химическими, физическими и физико-химическими методами.

Хроматографический метод анализа был впервые применен русским ученым-ботаником Михаилом Семеновичем Цветом в 1900 г. Он использовал колонку, заполненную карбонатом кальция, для разделения пигментов растительного происхождения. Первое сообщение о разработке метода хроматографии было сделано Цветом 30 декабря 1901 г. на XI съезде естествоиспытателей и врачей в Санкт- Петербурге. Первая печатная работа по хроматографии была опубликована в 1903 г., в журнале «Труды варшавского общества естествоиспытателей». Впервые термин «хроматография» появился в двух печатных работах Цвета в 1906 г., опубликованных в немецком журнале «Berichte der Deutschen Botanischen Gesellschaft». В 1907 г. Цвет демонстрирует немецкому ботаническому обществу образец хроматографа — прибора для осуществления процесса хроматографии. В 1910—1930 гг. метод был незаслуженно забыт и практически не развивался. В 1952 г. Дж. Мартину и Р. Синджу была присуждена Нобелевская премия по химии за создание метода распределительной хроматографии. С середины XX в. и до наших дней хроматография интенсивно развивалась и стала одним из самых широко применяемых методов анализа.

Хроматография применяется в лабораториях и в промышленности для качественного и количественного анализа многокомпонентных систем, контроля производства, особенно в связи с автоматизацией многих процессов, а также для препаративного (в том числе промышленного) выделения индивидуальных веществ (например, благородных металлов), разделения редких и рассеянных элементов.

В некоторых случаях для идентификации веществ используется хроматография в сочетании с другими физико-химическими и физическими методами, например с масс-спектрометрией, ИК-, УФ-спектроскопией и др. Для расшифровки хроматограмм и выбора условий опыта применяют ЭВМ.

Основные достоинства хроматографического анализа:

  • • экспрессность;
  • • высокая эффективность;
  • • возможность автоматизации и получения объективной информации;
  • • сочетание с другими физико-химическими методами;
  • • широкий интервал концентраций соединений;
  • • возможность изучения физико-химических свойств соединений;
  • • осуществление проведения качественного и количественного анализа;
  • • применение для контроля и автоматического регулирования технологических процессов.

В зависимости от природы взаимодействия, обусловливающего распределение компонентов между элюентом и неподвижной фазой, различают следующие основные виды хроматографии — адсорбционную, распределительную, ионообменную, эксклюзионную (молекулярно-ситовую) и осадочную.

Адсорбционная хроматография основана на различии сорбируемости разделяемых веществ адсорбентом (твердое тело с развитой поверхностью); распределительная хроматография — на разной растворимости компонентов смеси в неподвижной фазе (высококипящая жидкость, нанесенная на твердый макропористый носитель) и элюенте; ионообменная хроматография — на различии констант ионообменного равновесия между неподвижной фазой (ионитом) и компонентами разделяемой смеси; эксклюзионная (молекулярно- ситовая) хроматография — на разной проницаемости молекул компонентов в неподвижную фазу (высоконористый неионогенный гель). Осадочная хроматография основана на различной способности разделяемых компонентов выпадать в осадок на твердой неподвижной фазе.

В соответствии с агрегатным состоянием элюента различают:

  • • газовую хроматографию (ГХ);
  • • высокоэффективную жидкостную хроматографию (ВЭЖХ).

Газовая хроматография применяется для разделения газов, определения примесей вредных веществ в воздухе, воде, почве, промышленных продуктах; определения состава продуктов основного органического и нефтехимического синтеза, выхлопных газов, лекарственных препаратов, а также в криминалистике и т.д.

Жидкостная хроматография используется для анализа, разделения и очистки синтетических полимеров, лекарственных препаратов, детергентов, белков, гормонов и других биологически важных соединений. Использование высокочувствительных детекторов позволяет работать с очень малыми количествами веществ (10-11—10-9 г), что исключительно важно в биологических исследованиях.

В зависимости от агрегатного состояния неподвижной фазы газовая хроматография бывает газо-адсорбционной

(неподвижная фаза — твердый адсорбент) и газожидкостной (неподвижная фаза — жидкость), а жидкостная хроматография — жидкостно-адсорбционной (или твердожидкостной) и жидкостно-жидкостной.

Различают колоночную и плоскостную хроматографию. В колоночной сорбентом заполняют специальные трубки — колонки, а подвижная фаза движется внутри колонки благодаря перепаду давления. Разновидность колоночной хроматографии — капиллярная, когда тонкий слой сорбента наносится на внутренние стенки капиллярной трубки. Плоскостная хроматография подразделяется на тонкослойную и бумажную. В тонкослойной хроматографии тонкий слой гранулированного сорбента или пористая пленка наносятся на стеклянную или металлическую пластинки; в случае бумажной хроматографии используют специальную хроматографическую бумагу. Тонкослойная (ТСХ) и бумажная хроматография используются для анализа жиров, углеводов, белков и других природных веществ и неорганических соединений.

Ряд видов хроматографии осуществляется с помощью приборов, называемых хроматографами, в большинстве из которых реализуется проявительный вариант хроматографии. Хроматографы используют для анализа и для препаративного (в том числе промышленного) разделения смесей веществ. При анализе разделенные в хроматографической колонке вещества вместе с элюентом попадают в установленное на выходе из колонки специальное устройство — детектор, регистрирующее их концентрации во времени.

Полученную в результате этого выходную кривую называют хроматограммой. Для качественного хроматографического анализа определяют время от момента ввода пробы до выхода каждого компонента из колонки при данной температуре и при использовании определенного элюенга. Для количественного анализа определяют высоты или площади хроматографических пиков с учетом коэффициентов чувствительности используемого детектирующего устройства к анализируемым веществам.

В соответствии с природой детектора и механизмом возникновения сигнала различают химические, физические, физико-химические, биологические и другие детекторы различных хроматографических методов анализа (табл. 6.5).

Таблица 6.5

Подвижные, неподвижные фазы и детекторы различных хроматографических методов анализа

Методы

хроматографии

Подвижная

фаза

Неподвижная фаза

Детекторы

Газовая (ГХ)

Газ (гелий, азот, водород, аргон, воздух)

Неспецифические сорбенты (угли). Полярные соединения — Si02 иН20; А12Оэ. Молекулярные сита, или цеолиты — алюмосиликаты щелочных металлов, сополимеры стирола и дивинилбензола

Катарометр, пламенно-ионизационный (ПИД), по захвату электронов, термоионный, аргонный; масс-селсктивный (МСД), атомно- эмиссионный, инфракрасный, ИК-Фурье спектрометр

Газо-жидкостная

(ГЖХ)

Газ (гелий, азот, водород, аргон, воздух)

Пленки жидких сорбентов различной полярности нанесены на твердый носитель или стенки колонки (полиэтиленгликоли, силиконовые масла, эфиры гликолей)

Жидкостная сорбционная (жидкость- жидкостная (ЖЖХ), ВЭЖХ, жидкостная адсорбционная (ЖАХ))

Водно- органические буферные растворы — элюенты (ацетонитрил, этанол, вода, гексан, их смеси)

Пленки жидких сорбентов различной полярности нанесены на твердый носитель или стенки колонки (полиэтиленгликоли, силиконовые масла, эфиры гликолей). Полярные соединения — SiO, • яН20; А1203. Молекулярные сита или цеолиты - алюмосиликаты щелочных металлов, сополимеры стирола и дивинилбензола

Электрохимический, многоволновый оптический; по показателю преломления; флюоресцентный, УФ-, ИК-, видимый спектрофотометр; масс- спектрометр

Ионообменная

Водные

растворы

Катиониты, аниониты, амфолиты

Т итрометрия

Окончание табл. 6.5

Методы

хроматографии

Подвижная

фаза

Неподвижная фаза

Детекторы

Молекулярно-ситовая

Растворы

мономеров,

полимеров

Молекулярные сита органической и неорганической природы

Масс-

спектрометр,

вискозиметр

Плоскостная ЖЖХ, ЖАХ

Органические и неорганические растворители

Si02 ? иН20; А1,03, гидрофильная и гидрофобная бумага

Оптические, электрохимические

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >