ВОЛНОВАЯ ОПТИКА. ГЕОМЕТРИЧЕСКАЯ ОПТИКА. ИНТЕРФЕРЕНЦИЯ СВЕТА

В результате изучения данной главы студент должен: знать

  • • понятия волновой и геометрической оптики;
  • • понятие корпускулярно-волнового дуализма;
  • • четыре закона геометрической оптики;
  • • понятие интерференции света, когерентности, цуга;
  • • принцип Гюйгенса — Френеля;
  • • расчет интерференционной картины двух источников;
  • • расчет интерференции в тонких пленках;
  • • принципы просветления оптики; уметь
  • • решать типовые прикладные физические задачи на законы геометрической оптики и интерференцию света;

владеть

  • • навыками использования стандартных методов и моделей математики применительно к законам геометрической оптики и интерференции света;
  • • навыками использования методов аналитической геометрии и векторной алгебры применительно к законам геометрической оптики и интерференции света;
  • • навыками проведения физического эксперимента, а также обработки результатов эксперимента но законам геометрической оптики и интерференции света.

Волновая и геометрическая оптика. Законы геометрической оптики

Волновая оптика — раздел оптики, который описывает распространение света с учетом его волновой электромагнитной природы. В рамках волновой оптики теория Максвелла позволила достаточно просто объяснить такие оптические явления, как интерференция, дифракция, поляризация и т.п.

В конце XVII в. оформились две теории света: волновая (продвигалась Р. Гуком и X. Гюйгенсом) и корпускулярная (ее продвигал И. Ньютон). Волновая теория воспринимает свет как волновой процесс, подобный упругим механическим волнам. Согласно корпускулярной (квантовой) теории свет представляет собой поток частиц (корпускул), описываемых законами механики. Так, отражение света можно рассматривать аналогично отражению упругого шарика от плоскости. Долгое время две теории света считались альтернативными. Однако многочисленные опыты показали, что свет в одних опытах обнаруживает волновые свойства, а в других — корпускулярные. Поэтому в начале XX в. было признано, что свет принципиально имеет двойственную природу — обладает корпускулярно-волновым дуализмом.

Но прежде чем излагать основные положения и результаты волновой оптики, сформулируем элементарные законы геометрической оптики.

Геометрическая оптика — раздел оптики, изучающий законы распространения света в прозрачных средах и правила построения изображений при прохождении света в оптических системах без учета его волновых свойств. В геометрической оптике вводится понятие светового луча, определяющего направление потока лучистой энергии. При этом полагается, что распространение света не зависит от поперечных размеров пучка света. В соответствии с законами волновой оптики это справедливо, если поперечный размер пучка много больше длины волны света. Геометрическую оптику можно рассматривать как предельный случай волновой оптики при стремящейся к нулю длине волны света. Точнее границы применимости геометрической оптики будут определены при изучении дифракции света.

Основные законы геометрической оптики были открыты опытным путем задолго до выявления физической природы света. Сформулируем четыре закона геометрической оптики.

  • 1. Закон прямолинейного распространения света: в оптически однородной среде свет распространяется прямолинейно. Подтверждением этого закона служит резкая тень, отбрасываемая телом при освещении точечным источником света. Другой пример — при прохождении света далекого источника через небольшое отверстие получается узкий прямой световой луч. При этом необходимо, чтобы размер отверстия был много больше длины волны.
  • 2. Закон независимости световых пучков: производимый отдельным пучком света эффект не зависит от других пучков. Так, освещенность поверхности, на которую надает несколько пучков, равна сумме освещенностей, создаваемых отдельными пучками. Исключением являются нелинейные оптические эффекты, которые могут иметь место при больших интенсивностях света.

Рис. 26.1

3. Закон отражения света: падающий и отраженный лучи (а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча) лежат в одной плоскости (плоскости падения) по разные стороны от перпендикуляра. Угол отражения у равен углу падения а (рис. 26.1):

4. Закон преломления света: падающий и преломленный лучи (а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча) лежат в одной плоскости (плоскости падения) по разные стороны от перпендикуляра.

Отношение синуса угла падения а к синусу угла преломления р есть величина, постоянная для двух данных сред (рис. 26.1):

Здесь п — показатель преломления второй среды относительно первой.

Показатель преломления среды относительно вакуума называют абсолютным показателем преломления. Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

Законы отражения и преломления имеют объяснение в волновой физике. Преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления — отношение скорости распространения волны в первой среде v{ к скорости распространения во второй среде v2:

Абсолютный показатель преломления равен отношению скорости света с в вакууме к скорости света v в среде:

Среду с большим абсолютным показателем преломления называют оптически более плотной средой. При переходе света из оптически более плотной среды в оптически менее плотную, например из стекла в воздух (п2< пу), может иметь место явление полного отражения, т.е. исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол апр, который называется предельным углом полного внутреннего отражения. Для угла падения а = апр условием исчезновения преломленного луча является

Если второй средой является воздух (п2~ 1), то с помощью формул (26.2) и (26.3) формулу для вычисления предельного угла полного внутреннего отражения удобно записать в виде

где п = пх > 1 — абсолютный показатель преломления первой среды. Для границы раздела «стекло — воздух» (п = 1,5) критический угол апр = 42°, для границы «вода — воздух» (п = 1,33) апр= 49°.

Наиболее интересным применением полного внутреннего отражения является создание волоконных световодов, которые представляют собой тонкие (от нескольких микрометров до нескольких миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц, пластик). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей. Световод нельзя изгибать сильно, поскольку при сильном изгибе условие полного внутреннего отражения (26.7) нарушается и свет частично выходит из волокна через боковую поверхность.

Отметим, что первый, третий и четвертый законы геометрической оптики можно вывести из принципа Ферма (принципа наименьшего времени): траектория распространения светового луча соответствует наименьшему времени распространения. И это несложно показать.

В заключение рассмотрим одну из забавных задач геометрической оптики — создание шапки-невидимки. С точки зрения оптики шапка-невидимка могла бы представлять собой систему огибания объекта лучами света.

Сделать такую систему, воспользовавшись законом преломления света, в принципе несложно, основная проблема — в борьбе с сильным затуханием света в преломляющей системе. Поэтому лучшим вариантом может оказаться система из видеорегистратора изображения за объектом и телепередатчика этого изображения перед объектом.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >