ДИФРАКЦИЯ СВЕТА

В результате изучения данной главы студент должен: знать

  • • суть метода зон Френеля;
  • • теорию дифракции на круглом отверстии и круглом диске;
  • • теорию дифракции в параллельных лучах от одной щели;
  • • теорию дифракционной решетки (условия максимумов и минимумов, дисперсия и разрешающая способность решетки);
  • • теорию дифракции от объемных решеток и формулу Брэгга — Вульфа; уметь
  • • применять метод зон Френеля для расчета дифракционных картин;
  • • решать типовые прикладные физические задачи на дифракцию света; владеть
  • • навыками использования стандартных методов и моделей математики применительно к дифракции света;
  • • навыками проведения физического эксперимента, а также обработки результатов эксперимента по дифракции света.

Метод зон Френеля. Дифракция на круглом отверстии и круглом диске

Дифракцией света называют явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Проиллюстрировать это явление могут волны на воде, которые огибают даже довольно крупное препятствие, а мелкое (по сравнению с длиной волны) препятствие проходят так, как будто его и не было. И свет при определенных условиях может заходить в область геометрической тени. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина — чередующиеся светлые и темные кольца. Если препятствие прямолинейное (нить, щель, край экрана), то на экране возникают параллельные полосы.

Рассмотрим сначала дифракцию на круглом отверстии — дифракционную задачу о прохождении плоской монохроматической волны через небольшое круглое отверстие радиуса R в непрозрачном экране (рис. 27.1). Точка наблюдения Р находится на оси симметрии на достаточно большом расстоянии L от экрана, причем

где X — длина волны.

Рис. 27.1

В соответствии с принципом Гюйгенса — Френеля можно разбить волновую поверхность плоскости отверстия на набор вторичных источников, волны от которых дают интерференционную картину в точке Р. Исходя из круговой симметрии задачи, Френель разбил волновую поверхность падающей волны на кольцевые зоны (зоны Френеля) так, чтобы расстояния от границ соседних зон до точки Р отличались на полдлины волны:

Таким образом, волновая поверхность будет разбита на концентрические окружности (см. рис. 27.1). Найдем по теореме Пифагора радиусы рт этих окружностей (зон Френеля):

Здесь учтено условие удаленности экрана от отверстия, которое соблюдается на опыте обычно с большим запасом. Количество зон Френеля, укладывающихся на отверстии, определяется радиусом отверстия R:

где т — не обязательно целое число. Хотя для четкой интерференционной картины, как будет видно ниже, т с достаточно высокой точностью должно быть целым. Результат интерференции в точке Р зависит от числа т участвующих в интерференции зон Френеля. Покажем, что все зоны имеют одинаковую площадь Sm:

Одинаковые по площади зоны, излучающие одинаковую по амплитуде волну, на первый взгляд, должны давать одинаковый вклад в освещенность в точке наблюдения. Однако это не совсем так. Чем больше номер зоны, тем больше угол а между лучом гт и нормалью к излучающей волновой поверхности. К тому же растет и расстояние до точки наблюдения гт. Оба эти фактора приводят к небольшому уменьшению амплитуды колебаний с увеличением т в точке наблюдения Ат> обеспечиваемой зоной т:

При этом приближенно можно считать, что амплитуда колебаний Ат, вызываемых зоной ту равна среднему арифметическому из амплитуд колебаний, вызываемых двумя соседними зонами:

Существенно, что возбуждаемые соседними зонами колебания находятся в противофазе, поскольку расстояния от них до точки наблюдения отличаются на Х/2. Поэтому волна от последующей зоны почти гасит волну от предыдущей зоны. При этом суммарная амплитуда в точке наблюдения равна конечной сумме, число слагаемых в которой ограничено величиной т

В результате группировки амплитуд видно, что суммарная амплитуда колебаний в точке наблюдения всегда меньше амплитуды колебаний, которые вызвала бы одна первая зона Френеля. Если бы отверстие было бесконечно большим и были открыты все зоны Френеля, то до точки наблюдения дошла бы невозмущенная препятствием волна с амплитудой А0. Тогда имеем в результате группировки амплитуд бесконечную сумму, упрощающуюся с учетом равенства (27.7):

Таким образом, действие (амплитуда), вызванное всей волновой поверхностью невозмущенной волны, равно лишь половине действия одной первой зоны. Иными словами, если отверстие в непрозрачном экране оставляет открытой одну зону Френеля, то амплитуда колебаний в точке наблюдения возрастает в 2 раза (а интенсивность — в 4 раза) по сравнению с действием невозмущенной волны. Если открыть две зоны, то амплитуда колебаний практически обращается в нуль. А если изготовить непрозрачный экран, который оставлял бы открытыми только несколько нечетных (или только несколько четных) зон, то амплитуда колебаний в точке наблюдения резко возрастет. Так, если открыты первая, третья, пятая и седьмая зоны, то амплитуда колебаний возрастает в 8 раз, а интенсивность — в 64 раза. Можно сделать вывод, что такие зонные пластинки обладают свойством фокусировать свет.

Перейдем теперь к задаче о дифракции на круглом диске, не пропускающем свет. Предположим, что при этом зоны Френеля с номерами от 1 до т оказываются закрытыми. Тогда амплитуда колебаний в точке наблюдения по аналогии с предыдущими рассуждениями дается бесконечной суммой:

Здесь учтено, что выражения в скобках в соответствии с равенством (27.7) равны нулю. Если экран закрывает не слишком много зон, то

и аналогично формуле (27.10)

Таким образом, в центре картины при дифракции света на диске наблюдается интерференционный максимум, называемый пятном Пуассона. Э го пятно окружено светлыми и темными дифракционными кольцами, причем интенсивность максимумов убывает но мере удаления от центра.

Оценим теперь характерные размеры зон Френеля. Пусть, например, дифракционная картина наблюдается на экране, расположенном на расстоянии L— 1м от препятствия, а длина волны света X = 0,5 мкм (зеленый свет). Тогда радиус первой зоны Френеля по формуле (27.3) равен

р, = 4XL ~ 0,71 мм, а радиус сотой зоны Френеля

pwo = V100XL ~ 7,1 мм.

Дифракционные явления проявляются наиболее отчетливо, когда на

R2

препятствии укладывается малое число зон (27.4): т = ~гу ~ 1, или

KL

Это соотношение между длиной волны X, размером препятствия R и расстоянием от препятствия до точки наблюдения L можно рассматривать как границу применимости геометрической оптики. При больших длинах волн дифракция существенна, а при меньших работают геометрическая оптика и понятие геометрического луча света.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >