Распространение пламени по поверхности жидкости. Влияние внешних условий на скорость распространения пламени

Над поверхностью жидкого или твердого вещества при любой температуре существует паровоздушная смесь, давление которой в состоянии равновесия определяется давлением насыщенных паров или их концентрацией. С увеличением температуры давление насыщенных паров возрастет по экспоненциальной зависимости (уравнение Клапейрона — Клаузиса):

где Рп п — давление насыщенного пара, Па; Qllcn — теплота испарения, кДж/моль; Т — температура жидкости, К.

Для любой жидкости существует интервал температур, в котором концентрация насыщенных паров над зеркалом (поверхность жидкости) будет находится в области воспламенения, т.е. НКПВ < Сп < ВКПВ .

Для создания НКПВ паров достаточно нагреть до температуры, равной НТПВ, не всю жидкость, а лишь только ее поверхностный слой.

При наличии источника зажигания такая смесь будет способна к воспламенению. На практике чаще используют понятия «температура вспышки» и «температура воспламенения».

Температура вспышки — минимальная температура жидкости, при которой над ее поверхностью образуется концентрация паров, способная к воспламенению от источника зажигания, однако скорость образования паров недостаточна для поддержания горения.

Таким образом, как при температуре вспышки, так и при нижнем температурном пределе воспламенения над поверхностью жидкости образуется нижний концентрационный предел воспламенения, однако в последнем случае НКПВ создается насыщенными нарами. Поэтому температура вспышки всегда несколько выше, чем НТПВ. Хотя при температуре вспышки наблюдается кратковременное воспламенение паров, не способное перейти в устойчивое горение жидкости, тем не менее, при определенных условиях вспышка может стать причиной возникновения пожара.

Температура вспышки принята за основу классификации жидкостей на легковоспламеняющиеся (ЛВЖ) и горючие жидкости (ГЖ). К ЛВЖ относятся жидкости, имеющие температуру вспышки в закрытом сосуде 61°С и ниже, к горючим — с температурой вспышки более 61°С.

Экспериментально температуру вспышки определяют в приборах открытого и закрытого типа. В сосудах закрытого типа значения температуры вспышки всегда ниже, чем в открытом, поскольку в этом случае пары жидкости имеют возможность диффундировать в атмосферу и для создания горючей концентрации над поверхностью требуется более высокая температура.

В табл. 2.4 приведена температура вспышки некоторых жидкостей, определенных приборами открытого и закрытого типа.

Таблица 2.4

Температура вспышки разных видов жидкости при разных методах определения

Вид жидкости

Температура вспышки, К, определенная с помощью прибора

закрытого типа

открытого типа

Нефть

303

319

Мазут

369

382

Масло цилиндровое

488

509

Температура воспламенения — минимальная температура жидкости, при которой после воспламенения паров от источника зажигания устанавливается стационарное горение.

У легковоспламеняющихся жидкостей температура воспламенения выше, чем температура вспышки, на 1—5°, при этом, чем ниже температура вспышки, тем меньше разность между температурами воспламенения и вспышки.

У горючих жидкостей, имеющих высокую температуру вспышки, разница между этими температурами доходит до 25—35°. Между температурой вспышки в закрытом тигле и нижним температурным пределом воспламенения имеется корреляционная связь, описываемая формулой

Это соотношение справедливо при Гвс < 433 К.

Существенная зависимость температур вспышки и воспламенения от условий эксперимента вызывает определенные трудности при создании расчетного метода оценки их величины. Одним из наиболее распространенных из них является полуэмиирический метод, предложенный В. И. Блиновым:

где Гвс — температура вспышки (воспламенения), К; Рп л — парциальное давление насыщенного пара жидкости при температуре вспышки (воспламенения), Па; D0 — коэффициент диффузии паров жидкости, с/м2; b — количество молекул кислорода, необходимое для полного окисления одной молекулы горючего; В — константа метода определения.

При расчете температуры вспышки в замкнутом сосуде рекомендуется принимать В = 28, в открытом сосуде В = 45; для расчета температуры воспламенения принимают В = 53.

Температурные пределы воспламенения могут быть рассчитаны:

— по известным значениям температуры кипения

где Гн(в), Ткш соответственно нижний (верхний) температурный предел воспламенения и температура кипения, °С; k, I — параметры, значения которых зависят от вида горючей жидкости;

— по известным значениям концентрационных пределов. Для этого сначала определяется концентрация насыщенных паров над поверхностью жидкости

где ф„ п — концентрация насыщенных паров, %; Рнп — давление насыщенных паров, Па; Р0 — внешнее (атмосферное) давление, Па.

Из формулы (2.41) следует

Опеределив по значению нижнего (верхнего) предела воспламенения давление насыщенного пара, находим температуру, при которой это давление достигается. Она и является нижним (верхним) температурным пределом воспламенения.

По формуле (2.41) можно решать и обратную задачу: рассчитывать концентрационные пределы воспламенения по известным значениям температурных пределов.

Свойство пламени к самопроизвольному распространению наблюдается не только при горении смесей горючих газов с окислителем, но и при горении жидкостей и твердых веществ. При локальном воздействии тепловым источником, например открытым пламенем, жидкость будет прогреваться, возрастет скорость испарения и при достижении поверхностью жидкости температуры воспламенения в месте воздействия теплового источника произойдет зажигание паровоздушной смеси, установится устойчивое пламя, которое затем с определенной скоростью будет распространяться по поверхности и холодной части жидкости.

Что же является движущей силой распространения процесса горения, каков его механизм?

Распространение пламени по поверхности жидкости протекает в результате теплопередачи за счет излучения, конвекции и молекулярной теплопроводности от зоны пламени к поверхности зеркала жидкости.

По современным представлениям основной движущей силой распространения процесса горения является теплоизлучение от пламени. Пламя, обладая высокой температурой (более 1()()()°С), способно, как известно, излучать тепловую энергию. Согласно закону Стефана — Больцмана интенсивность лучистого теплового потока, отдаваемого нагретым телом, определяется соотношением

где цл — интенсивность лучистого теплового потока, кВт/м2; е0 — степень черноты тела (пламени) (е0 = 0,75-Н,0); ст = = 5,7 • 10 11 кДж/(м2-с-К4) — постоянная Стефана — Больцмана; ТГ — температура тела (пламени), К; Т0 температура среды, К.

Тепло, излучаясь во все стороны, частично поступает и на еще не загоревшиеся участки поверхности жидкости, прогревая их. При повышении температуры поверхностного слоя над прогретым участком процесс испарения жидкости интенсифицируется и образуется паровоздушная смесь. Как только концентрация паров жидкости превысит HKBJ1, произойдет ее зажигание от пламени. Затем уже этот участок поверхности жидкости начинает интенсивно прогревать соседний участок поверхности жидкости и т.д. Скорость распространения пламени по жидкости зависит от скорости прогрева поверхности жидкости лучистым тепловым потоком от пламени, т.е. от скорости образования горючей паровоздушной смеси над поверхностью жидкости, которая, в свою очередь, зависит от природы жидкости и начальной температуры.

Каждый вид жидкости имееют свою теплоту испарения и температуру вспышки. Чем выше их значения, тем более длительное время необходимо для ее прогрева до образования горючей паровоздушной смеси, тем, следовательно, ниже скорость распространения пламени. С увеличением молекулярной массы вещества в пределах одного гомологического ряда снижается давление паров упругости, возрастают теплота испарения и температура вспышки, соответственно снижается скорость распространения пламени.

Увеличение температуры жидкости повышает скорость распространения пламени, так как время, необходимое для прогрева жидкости до температуры вспышки перед зоной горения, уменьшается.

При вспышке скорость распространения пламени по зеркалу жидкости будет (по физическому смыслу) равна скорости распространения пламени по паровоздушной смеси состава, близкого к I1KIIB, т.е. 4—5 см/с. При увеличении начальной температуры жидкости выше температуры вспышки скорость распространения пламени будет зависеть (аналогично скорости распространения пламени) от состава горючей смеси. Действительно, при увеличении температуры жидкости выше температуры ее вспышки концентрация паровоздушной смеси над поверхностью зеркала будет расти от НКВП до 100% (температура кипения).

Следовательно, вначале при повышении температуры жидкости от температуры вспышки до температуры, при которой над поверхностью образуются насыщенные пары, с концентрацией, равной стехиометрической (точнее, несколько выше, чем стехиометрическая), скорость распространения пламени будет нарастать. В закрытых сосудах по мере дальнейшего повышения температуры жидкости скорость распространения пламени начинает снижаться, вплоть до скорости, соответствующей верхнему температурному пределу воспламенения, при котором распространение пламени по паровоздушной смеси станет уже невозможным из-за недостатка кислорода в паровоздушной смеси над поверхностью жидкости. 11ад поверхностью же открытого резервуара концентрация паров на разных уровнях будет различной: у поверхности она будет максимальной п соответствовать концентрации насыщенного пара при данной температуре, по мере увеличения расстояния от поверхности концентрация постепенно будет снижаться из-за конвективной и молекулярной диффузии.

При температуре жидкости, близкой к температуре вспышки, скорость распространения пламени по поверхности жидкости будет равна скорости его распространения по смеси паров в воздухе на НКПВ, т.е. 3—4 см/с. При этом фронт пламени будет расположен у поверхности жидкости. При дальнейшем увеличении начальной температуры жидкости скорость распространения пламени будет расти аналогично росту нормальной скорости распространения пламени по паровоздушной смеси с увеличением ее концентрации. С максимальной скоростью пламя будет распространяться но смеси с концентрацией, близкой к стехиометрической. Следовательно, с увеличением начальной температуры жидкости выше Гстх скорость распространения пламени будет оставаться постоянной, равной максимальному значению скорости распространения горения по стехиометрической смеси или несколько больше ее (рис. 2.5). Таким образом,

Зависимость скорости распространения пламени но зеркалу жидкости от ее начальной температуры

Рис. 2.5. Зависимость скорости распространения пламени но зеркалу жидкости от ее начальной температуры:

1 — горение жидкости в закрытой емкости; 2 — горение жидкости в открытой емкости при изменении начальной температуры жидкости в открытой емкости в широком диапазоне температур (вплоть до температуры кипения) скорость распространения пламени будет изменяться от нескольких миллиметров до 3—4 м/с.

С максимальной скоростью пламя будет распространяться по смеси с концентрацией, близкой к стехиометрической. С увеличением температуры жидкости выше Гстх увеличится расстояние над жидкостью, на котором сформируется стехиометрическая концентрация, а скорость распространения пламени останется прежней (см. рис. 2.5). Это обстоятельство всегда надо помнить, как при организации профилактической работы, так и при тушении пожаров, когда, например, может возникнуть опасность подсоса воздуха в закрытую емкость — ее разгерметизация.

После возгорания жидкости и распространения пламени но ее поверхности устанавливается диффузионный режим ее выгорания, который характеризуется удельной массовой WrM и линейной Wr jl скоростями.

Удельная массовая скорость — масса вещества, выгорающего с единицы площади зеркала жидкости в единицу времени (кг/(м2*с)).

Линейная скорость — расстояние, на которое перемещается уровень зеркала жидкости в единицу времени за счет ее выгорания (м/с).

Массовая и линейная скорости выгорания взаимосвязаны через плотность жидкости р:

После воспламенения жидкости температура ее поверхности повышается от температуры воспламенения до кипения, происходит формирование прогретого слоя. В этот период скорость выгорания жидкости постепенно повышается, растет высота факела пламени в зависимости от диаметра резервуара и вида горючей жидкости. После 1 — 10 мин горения наступает стабилизация процесса: скорость выгорания и размеры пламени остаются в дальнейшем неизменными.

Высота и форма пламени при диффузионном горении жидкости и газа подчиняются одним и тем же закономерностям, поскольку в обоих случаях процесс горения определяется взаимной диффузией горючего и окислителя. Однако если при диффузионном горении газов скорость струи газа не зависит от процессов, протекающих в пламени, то при горении жидкости устанавливается определенная скорость выгорания, которая зависит как от термодинамических параметров жидкости, так и от условий диффузии кислорода воздуха и паров жидкости.

Между зоной горения и поверхностью жидкости устанавливается определенный тепло- и массообмен (рис. 2.6). Часть теплового потока, поступающего к поверхности жидкости <70, затрачивается на ее нагрев до температуры кипения <7КИП и испарения жидкости qKCir Кроме того, тепло qCT на нагрев жидкости поступает от факела пламени через стенки резервуара за счет теплопроводности. При достаточно большом его диаметре величиной qCT можно прене- бречь, тогда q0 = qKtfn+qltcn.

Очевидно, что

где с — теплоемкость жидкости, кДжДкг-К); р — плотность жидкости, кг/м3; Wnc скорость роста прогретого слоя, м/с; WJl линейная скорость выгорания, м/с; (2иСП — теплота парообразования, кДж/кг; Гкип — температура кипения жидкости, К.

Распределение температуры (поле температур) при горении жидкости

Рис. 2.6. Распределение температуры (поле температур) при горении жидкости:

Т{) начальная температура; Гкип — температура кипения;

Тг температура горения; qKHW q4 соответственно конвективный и лучистый тепловые потоки; q0 тепловой поток, поступающий на поверхность жидкости

Принимая для простоты Wrjl = Wnc> получим

Из формулы (2.45) следует, что интенсивность теплового потока из зоны пламени обусловливает определенную скорость поставки горючего в эту зону, химическое взаимодействие которого с окислителем, в свою очередь, влияет на величину <у0. В этом и состоит взаимосвязь массо- и теплообмена зоны пламени и конденсированной фазы при горении жидкостей и твердых веществ.

Оценку доли тепла от общего тепловыделения при горении жидкости, которая затрачивается на ее подготовку к горению q0, можно провести в следующей последовательности.

Скорость тепловыделения с единицы поверхности зеркала жидкости (удельную теплоту пожара диж) можно определить по формуле

где QH — низшая теплота сгорания вещества, кДж/кг; |3П - коэффициент полноты сгорания.

Тогда, учитывая состояние (2.44) и разделив выражение (2.45) на формулу (2.46), получим

Расчеты показывают, что около 2% от общего тепловыделения при горении жидкости затрачивается на образование и доставку паров жидкости в зону горения. При установлении процесса выгорания температура поверхности жидкости увеличивается до температуры кипения, которая в дальнейшем остается неизменной. Данное утверждение относится к индивидуальной жидкости. Если же рассматривать смеси жидкостей, имеющих разную температуру кипения, то сначала происходит выход легкокипящих фракций, затем — все более высококипящих.

На скорость выгорания значительное влияние оказывает прогрев жидкости по глубине в результате передачи тепла от нагретой лучистым потоком д0 поверхности жидкости в ее глубь. Этот теплоперенос осуществляется за счет теплопроводности и конвенции.

Прогрев жидкости за счет теплопроводности может быть представлен экспоненциальной зависимостью вида

где Тх температура слоя жидкости на глубине х, К; Гкип — температура поверхности (температура кипения), К; k — коэффициент пропорциональности, м-1.

Такой тип температурного поля называется распределением температуры первого рода (рис. 2.7).

Ламинарная конвенция возникает в результате различной температуры жидкости у стенок резервуара и в его центре, а также вследствие фракционной разгонки в верхнем слое при горении смеси.

Дополнительная передача тепла от нагретых стенок резервуара к жидкости приводит к прогреву ее слоев у стенок до более высокой температуры, чем в центре. Более нагретая у стенок жидкость (или даже пузырьки пара в случае ее прогрева у стенок выше температуры кипения) поднимается вверх, что способствует интенсивному промешиванию и быстрому прогреву жидкости на большой глубине. Образуется так называемый гомотермический слой, т.е. слой с практически постоянной температурой, толщина которого увеличивается во время горения. Такое температурное поле называют распределением температуры второго рода.

Изменение температуры в прогретом слое бензина

Рис. 2.7. Изменение температуры в прогретом слое бензина:

1 — распределение температуры первого рода; 2 — распределение температуры второго рода

Образование гомотермического слоя возможно также и в результате фракционной перегонки приповерхностных слоев смеси жидкостей, имеющих различную температуру кипения. По мере выгорания таких жидкостей приповерхностный слой обогащается более плотными высококипя- щими фракциями, которые опускаются вниз, способствуя тем самым конвективному прогреву жидкости.

Установлено, что чем ниже температура кипения жидкости (дизельное топливо, трансформаторное масло), тем труднее образуется гомотермический слой. При их горении температура стенок резервуара редко превышает температуру кипения. Однако при горении влажных высококипя- щих нефтепродуктов вероятность образования гомотермического слоя достаточна высокая. При прогреве стенок резервуара до 100°С и выше образуются пузырьки водяного пара, которые, устремляясь вверх, вызывают интенсивное перемещение всей жидкости и быстрый прогрев в глубине. Зависимость толщины гомотермического слоя от времени горения описывается соотношением

где х — толщина гомотермического слоя на некоторый момент времени горения, м; хпр — предельная толщина гомотермического слоя, м; т — время, отсчитываемое от момента начала формирования слоя, с; р — коэффициент, с-1.

Возможность образования достаточно толстого гомотермического слоя при горении влажных нефтепродуктов чревата возникновением вскипания и выброса жидкости.

Скорость выгорания существенно зависит от вида жидкости, начальной температуры, влажности и концентрации кислорода в атмосфере.

Из уравнения (2.45) с учетом выражения (2.44) можно определить массовую скорость выгорания:

Из формулы (2.50) очевидно, что на скорость выгорания оказывают влияние интенсивность теплового потока, поступающего от пламени к зеркалу жидкости, и теплофизические параметры горючего: температура кипения, теплоемкость и теплота испарения.

Из табл. 2.5 очевидно, что существует определенное соответствие между скоростью выгорания и затратами тепла на прогрев и испарения жидкости. Так, в ряду бен- золксилолглицеринов с увеличением затрат тепла на прогрев и испарение скорость выгорания снижается. Однако при переходе от бензола к диэтиловому эфиру затраты тепла уменьшаются. Это кажущееся несоответствие обусловлено различием в интенсивности тепловых потоков, поступающих от факела к поверхности жидкости. Лучистый поток достаточно велик для коптящего пламени бензола и мал для относительно прозрачного пламени диэтилового эфира. Как правило, соотношение скоростей выгорания наиболее быстро горящих жидкостей и наиболее медленно горящих достаточно невелико и составляет 3,0—4,5.

Таблица 2.5

Зависимость скорости выгорания от затрат тепла на прогрев и испарение

Горючая жидкость

Линейная скорость выгорания, мм/с

Сумма энергии кипения и испарения, кДж • м 3 • 10 з

Бензол

0,052

440

Диэтиловый эфир

0,048

283

Ксилол

0,033

488

Глицерин

0,007

1510

Из выражения (2.50) следует, что с увеличением Г0 скорость выгорания возрастает, поскольку снижаются затраты тепла на прогрев жидкости до температуры кипения.

Содержание влаги в смеси понижает скорость выгорания жидкости, во-первых, вследствие дополнительных затрат тепла на ее испарение, а во-вторых, в результате флегмати- зирующего влияния паров воды в газовой зоне. Последнее приводит к снижению температуры пламени, а следовательно, согласно формуле (2.43), уменьшается и его излучающая способность. Строго говоря, скорость выгорания влажной жидкости (жидкости, содержащей воду) не постоянна, она увеличивается или уменьшается в процессе горения в зависимости от температуры кипения жидкости.

Влажное горючее может быть представлено как смесь двух жидкостей: горючее + вода, в процессе горения которых происходит их фракционная разгонка. Если температура кипения горючей жидкости меньше температуры кипения воды (100°С), то происходит преимущественное выгорание горючего, смесь обогащается водой, скорость выгорания снижается и, наконец, горение прекращается. Если температура кипения жидкости больше 100° С, то, наоборот, сначала преимущественно испаряется влага и концентрация ее снижается. В результате скорость выгорания жидкости возрастает, вплоть до скорости горения чистого продукта.

Как правило, с повышением скорости ветра скорость выгорания жидкости увеличивается. Ветер интенсифицирует процесс смешивания горючего с окислителем, тем самым повышая температуру пламени (табл. 2.6) и приближая пламя к поверхности горения.

Таблица 2.6

Влияние скорости ветра на температуру пламени

Скорость ветра, м/с

Температура пламени, К

0,8

1393

1,0

1453

2,1

1463

Все это повышает интенсивность теплового потока, поступающего на нагрев и испарение жидкости, следовательно, приводит к увеличению скорости выгорания. При большей скорости ветра пламя может сорваться, что приведет к прекращению горения. Так, например, при горении тракторного керосина в резервуаре диаметром 3 м наступал срыв пламени при скорости ветра 22 м/с.

Большинство жидкостей не могут гореть в атмосфере с содержанием кислорода менее 15%. С увеличением концентрации кислорода выше этого предела скорость выгорания растет. В атмосфере, значительно обогащенной кислородом, горение жидкости протекает с выделением большого количества сажи в пламени и наблюдается интенсивное кипение жидкой фазы. Для многокомпонентных жидкостей (бензин, керосин и т.н.) температура поверхности с увеличением содержания кислорода в окружающей среде растет.

Повышение скорости выгорания и температуры поверхности жидкости с ростом концентрации кислорода в атмосфере обусловлено увеличением излучающей способности пламени в результате роста температуры горения и высокого содержания сажи в нем.

Скорость выгорания также значительно меняется с понижением уровня горючей жидкости в резервуаре: происходит снижение скорости выгорания, вплоть до прекращения горения. Поскольку подвод кислорода воздуха из окружающей среды внутрь резервуара затруднен, то при понижении уровня жидкости увеличивается расстояние hup между зоной пламени и поверхностью горения (рис. 2.8). Лучистый поток к зеркалу жидкости уменьшается, а следовательно, уменьшается и скорость выгорания, вплоть до затухания. При горении жидкостей в резервуарах большого диаметра предельная глубина Амр, при которой происходит затухание горения, очень большая. Так, для резервуара с диаметром 5 м она составляет 11 м, а с диметром 11м — около 35 м.

Схема отрыва зоны пламени от поверхности жидкости при понижении ее уровня в резервуаре

Рис. 2.8. Схема отрыва зоны пламени от поверхности жидкости при понижении ее уровня в резервуаре

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >