Меню
Главная
Авторизация/Регистрация
 
Главная arrow Техника arrow ОСНОВЫ КОНСТРУИРОВАНИЯ И ПРОЕКТИРОВАНИЯ ПРОМЫШЛЕННЫХ АППАРАТОВ
Посмотреть оригинал

МОДЕЛИРОВАНИЕ И ИНТЕНСИФИКАЦИЯ РАБОТЫ ТЕПЛООБМЕННОЙ АППАРАТУРЫ

КЛАССИФИКАЦИЯ И МЕТОДЫ ИНТЕНСИФИКАЦИИ РАБОТЫ ТЕПЛООБМЕННОГО ОБОРУДОВАНИЯ

Реализация тепловых процессов в промышленности требует установки крупногабаритного теплообменного оборудования с большой площадью поверхности теплопередачи. Например, в агрегатах синтеза аммиака большой единичной мощности (1360т/сут) АМ-70 и АМ-76 из 205 единиц основного оборудования 57 составляют различные типы теплообменных аппаратов с общей поверхностью теплообмена 150000 м2, при этом поверхность теплообмена одного аппарата в блоке синтеза составляет 3200 м2, а в блоке МЭА-очистки - 29000 м2. На изготовление теплообменных аппаратов ежегодно расходуется большое количество остродефицитных труб из нержавеющей стали и титана.

Химические производства характеризуются большим разнообразием условий проведения тепловых процессов, они различаются по виду теплообмена, давлению, температуре и агрессивности теплоносителей. Все это обусловливает создание и изготовление различных по конструкции и назначению типов теплообменных аппаратов.

Современные теплообменные аппараты должны обеспечивать необходимый теплосъем на единицу площади теплообменника, высокую пропускную способность по теплоносителям при допустимых перепадах давлений, высокую коррозионную стойкость в афессивных средах, надежную работу в течение длительного периода эксплуатации, стабильность тепловых и гидромеханических характеристик за счет механической или химической очистки поверхности теплообмена, удобство в эксплуатации. При серийном производстве теплообменников их узлы и детали должны быть максимально унифицированы.

Наиболее широкое применение в настоящее время находят рекуперативные теплообменники, которые по своим основным конструктивным признакам разделяются на:

теплообменные аппараты, изготавливаемые из фуб различной формы и диамефов: кожухофубчатые, “труба в фубе”, змеевиковые погружные, оросительные, витые, воздушного охлаждения с оребренными трубами;

теплообменные аппараты, изготовленные из листа: пластинчатые (разборные, полуразборные, неразборные), пластинчаторебристые, спиральные, ламельные и панельные;

теплообменные аппараты, совмещенные с различными типами химических аппаратов и реакторов.

Теплообменники могут быть изготовлены из различных металлов, графита и фторопластов различных типов.

В зависимости от направления движения теплоносителей вдоль поверхности теплообмена различают теплообменные аппараты с прямотоком, противотоком, перекрестным током, в том числе одноходовые или многоходовые.

Все эти типы теплообменных аппаратов могут быть использованы в качестве холодильников, подогревателей, конденсаторов и испарителей.

Конструктивные особенности теплообменных аппаратов определяют область, в которой они могут быть применены для различных температур и давлении. Наиболее широко применяются трубчатые теплообменные аппараты, работающие в широком диапазоне температур (от минус 200 до плюс 475 °С) и давлений (до 6,0 МПа). Однако эти аппараты имеют низкие коэффициенты теплопередачи [1000-1500 Вт/(м2 К)], высокую металлоемкость (до 37 кг/м2); для их изготовления необходимы остродефицитные из нержавеющей стали бесшовные трубы и значительные трудозатраты. Они имеют низкую степень унификации узлов и деталей - 10-12%.

Более низкие значения коэффициентов теплопередачи и высокую металлоемкость имеют оросительные теплообменники, теплообменники “труба в трубе”, аппараты воздушного охлаждения, которые, однако, могут работать при более высоких давлениях, чем кожухотрубчатые.

Научно-технический прогресс в химическом машиностроении в последние годы характеризуется созданием большого количества высокопроизводительного оборудования большой единичной мощности, в том числе теплообменных аппаратов для химической, нефтехимической и микробиологической промышленности.

Анализ параметров работы кожухотрубчатых теплообменников в химической и смежных отраслях промышленности показывает, что около 70% теплообменников применяется для давлений до 1,0 МПа и температур до 200 °С. Для этих условий возможно эффективное использование новых прогрессивных пластинчатых теплообменных аппаратов (ПТА), которые имеют высокие коэффициенты теплопередачи [3000-5000 Вт/(м2К)], низкий удельный расход металла на единицу площади поверхности теплопередачи (до 10-17 кг/м2) и высокую степень унификации основных узлов и деталей (до 80-90%).

Увеличение теплосъема на единицу площади теплообменного оборудования кожухотрубчатого типа обычно сопровождается экстенсивным ростом поверхности теплообмена, размеров, массы и его стоимости. Поэтому необходимы более эффективные методы интенсификации теплообмена, принципиально новые решения в области конструирования, технологии изготовления и организации производства теплообменных аппаратов.

Необходимость сокращения расхода энергии и материалов, а также снижение стоимости теплообменного оборудования обусловила в последние годы расширение работ, направленных на интенсификацию процесса теплообмена, снижение массы и габаритов теплообменников, увеличение их тепловой производительности или снижение затрат энергии на осуществление процессов теплопередачи при прочих равных условиях. Число работ, посвященных интенсификации процесса теплообмена, из года в год растет.

Среди методов интенсификации можно выделить три основные группы: пассивные, активные и комбинированные.

К пассивным методам (не требующим дополнительных затрат энергии, кроме энергии самого потока) относят специальную физико-химическую обработку поверхностей теплообмена, использование устройств, обеспечивающих перемешивание и закручивание потока, применение шероховатых и развитых поверхностей, а также различных способов воздействия на поверхностное натяжение, в том числе добавление в теплоносители необходимых примесей.

Активные методы интенсификации включают механические воздействия на поток, пульсацию потока жидкости, вибрацию поверхностей теплообмена, применение электростатических и электромагнитных полей, вдув и отсос теплоносителя в пограничном слое.

Одновременное применение двух или более из этих методов представляет собой комбинированный метод.

Трудности конструктивного решения при использовании активных методов интенсификации теплопередачи теплообменных аппаратов различных типов, применяемых в химической промышленности, определили преимущественное использование пассивных методов.

Для потока однофазных теплоносителей следует выделить методы увеличения теплоотдачи путем искусственной турбулизации всего потока и методы целенаправленной турбулизации пристенного слоя.

К первой группе методов относят интенсификацию при внешнем обтекании оребренных и гладких труб, при использовании различных вставок в прямолинейных трубах и каналах для закрутки и турбулизации потоков, различных типов криволинейных труб и каналов сложной формы.

Вторая группа методов пассивной интенсификации включает использование как естественной шероховатости поверхности теплообмена, образующейся в результате ее изготовления, так и создание различных типов искусственной шероховатости в виде волнистой поверхности, кольцевых проточек и выдавок, диафрагм и винтовой поверхности труб, а также искусственной шероховатости в каналах.

Методы пассивной интенсификации используются и для процессов теплообмена с изменением агрегатного состояния веществ. Здесь, наряду с турбулизацией фаз двухфазных потоков, эффективно применяется целенаправленное воздействие сил поверхностного натяжения на пленку конденсата при конденсации пара и создание специальных видов шероховатости и пористых поверхностей при кипении жидкостей.

Анализ методов пассивной интенсификации конвективного теплообмена при вынужденном движении турбулентных потоков показывает, что основной источник интенсификации теплообмена в турбулентных потоках - повышение степени турбулентности за счет отрывных явлений, вихревых структур и закрутки потока, многократного изменения направления движения и перестройки профиля скорости, а также при введении в поток различных турбулизирующих элементов.

Анализ влияния отрывных явлений на увеличение турбулентности в потоке показал, что наиболее эффективным методом управляемого воздействия на структуру потока является создание в нем отрывных зон и других организованных вихревых структур. Целесообразно конструировать турбулизаторы такого профиля, которые обусловливают наличие в потоке трехмерных структур с небольшими отрывными зонами. Это позволяет избежать возникновения за турбулизаторами мощных вихрей, диссипация энергии в которых соизмерима с выработкой турбулентности, что ведет к большим гидравлическим потерям.

Все известные способы интенсификации теплоотдачи за счет дополнительной искусственной турбулизации потока связаны с ростом коэффициента гидравлического сопротивления. Поэтому для выбора метода интенсификации теплоотдачи в различных конструкциях теплообменных аппаратов необходимы надежные методы сопоставления эффективности конвективных поверхностей теплообмена.

Методы теплоэнергетического сравнения конвективных поверхностей нагрева позволяют выбрать наиболее эффективный способ интенсификации теплообмена для различных конструкций теплообменных аппаратов и оценить эффективность создаваемых новых форм поверхностей теплообмена. Вместе с тем наиболее полная оценка эффективности создаваемого теплообменного аппарата должна дополнительно учитывать массовые, объемные и стоимостные характеристики, показатели технологичности и степени унификации узлов и деталей, эксплуатационные показатели. В комплексе эти вопросы решаются при оптимизации теплообменных аппаратов.

Сравнение эффективности конвективных теплообменных аппаратов различной конструкции показало, что особое место среди них занимают пластинчатые теплообменные аппараты (ПТА), изготавливаемые методом холодной штамповки из тонкого листового металла. Интенсификация теплообмена в них происходит за счет высокой степени искусственной турбулиза- ции потока, движущегося тонкими слоями в узких межпластинных каналах сложной геометрической формы при многократном изменении направления движения.

 
Посмотреть оригинал
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Популярные страницы