Меню
Главная
Авторизация/Регистрация
 
Главная arrow Товароведение arrow Электроника

Варикапы

Напомним, что при подаче обратного напряжения р-п-структура уподобляется конденсатору, пластинами которого являются р- и n-области, разделенные диэлектриком (переходом, почти свободным от носителей заряда). Образующаяся при этом барьерная емкость может быть использована в качестве конденсатора в электронной аппаратуре. Варикапы – это полупроводниковые диоды, работа которых основана на явлении барьерной емкости запертого р-п-перехода. Поскольку размеры области p-n-перехода зависят от значения приложенного к нему обратного напряжения, то и величина барьерной емкости изменяется вместе с этим напряжением.

Внешнее обратное напряжение, втягивая электроны вглубь n-области, а дырки – вглубь p-области, расширяет p-n-переход и изменяет барьерную емкость. Основной характеристикой варикапа является зависимость его емкости от значения обратного напряжения – вольт-фарадная характеристика. Основными параметрами варикапов являются номинальная емкость и диапазон ее изменения, а также допустимые обратное напряжение и мощность. Варикапы применяются для электрической настройки колебательных контуров в радиоаппаратуре.

Светодиоды

На основе явлений, происходящих в р-п-переходе при протекании через него прямого тока, можно получать полупроводниковые приборы, способные генерировать оптическое излучение. Такими приборами являются полупроводниковые светодиоды. Работа светодиодов основана на инжекционной электролюминесценции, т.е. генерации оптического излучения в p-n-переходе, находящемся под прямым внешним напряжением. Под воздействием внешней энергии электроны в атомах переходят в возбужденное состояние с более высоким уровнем энергии W2, называемым метастабильным уровнем возбуждения. При возвращении этих электронов с метастабильного уровня W2 на исходный W1 происходит испускание фотонов с длиной волны, определяемой соотношением:

К преимуществам полупроводниковых светодиодов относятся высокий по сравнению с лампами накаливания КПД, относительно узкий спектр излучения и хорошая диаграмма направленности, высокое быстродействие и малое напряжение питания. Все это обеспечивает удобство согласования с интегральными микросхемами, высокую надежность, долговечность и технологичность. Спектр излучения, а следовательно и его цвет, зависит от используемого полупроводникового материала. Светодиоды изготавливают не на основе кремния или германия, как большинство полупроводниковых приборов, а на основе арсенида-фосфида галлия. Яркость свечения пропорциональна прямому току светодиода. Тока в несколько миллиампер уже достаточно для отчетливой индикации. Светодиоды изготавливают как в виде отдельных индикаторов, так и в виде семисегментных или точечных матриц. Семисегментные матрицы состоят из семи светящихся полосок – сегментов, из которых можно синтезировать изображение любой цифры от 0 до 9 (такие матрицы используются, например, в электронных часах с цифровой индикацией). В точечных матрицах изображение формируется из светящихся точек. На основе точечных матриц можно синтезировать изображение уже не только цифры, но и любого индицируемого знака (буквы, специального символа и т.д.).

Фотодиоды

Простейший фотодиод представляет собой обычный полупроводниковый диод (см. рис. 1.4, я), в котором обеспечивается возможность воздействия оптического излучения на р-n-переход. В равновесном состоянии, когда поток излучения полностью отсутствует, концентрация носителей, распределение потенциала и энергетическая зонная диаграмма фотодиода полностью соответствуют обычной р-n-структуре.

При воздействии излучения в направлении, перпендикулярном плоскости р-n-перехода, в результате поглощения фотонов с энергией, большей, чем ширина запрещенной зоны, в n-области возникают электронно-дырочные пары. Эти электроны и дырки называют фотоносителями. При диффузии фотоносителей вглубь n-области основная доля электронов и дырок не успевает рекомбинировать и доходит до границы p-n-перехода. Здесь фотоносители разделяются электрическим нолем р-n-перехода, причем дырки переходят в p-область, а электроны не могут преодолеть иоле перехода и скапливаются у границы р-n-перехода и n-области.

Таким образом, ток через p-n-переход обусловлен дрейфом неосновных носителей – дырок. Дрейфовый ток фотоносителей называется фототоком Iф. Фотоносители – дырки – заряжают p-область положительно относительно n-области, а фотоносители – электроны – заряжают n-область отрицательно по отношению к p-области. Возникающая разность потенциалов называется фотоЭДС – Еф. Генерируемый ток в фотодиоде – обратный, он направлен от катода к аноду. Причем его величина тем больше, чем больше освещенность.

Фотодиоды могут использоваться для получения электрической энергии. Так, солнечные батареи изготавливают на основе фотодиодов с большой площадью р-n-перехода.

Оптроны

Светодиоды и фотодиоды часто используются в парс. При этом они помещаются в один корпус таким образом, чтобы светочувствительная площадка фотодиода располагалась напротив излучающей площадки светодиода. Полупроводниковые приборы, использующие нары "светодиод-фотодиод", называются оптронами (рис. 1.7). Они широко используются в электронной аппаратуре для гальванической развязки входных и выходных цепей.

Оптрон

Рис. 1.7. Оптрон:

1 – светодиод; 2 – фотодиод

Входные и выходные цепи в таких приборах оказываются электрически никак не связанными, поскольку передача сигнала осуществляется через оптическое излучение.

Использование оптронов в электронно-вычислительных устройствах является одним из основных методов повышения помехоустойчивости аппаратуры.

Основной носитель помех в радиоэлектронной аппаратуре – корпус. Корпус используется как один из полюсов электропитания, поэтому подключение к нему разных силовых устройств приводит к наведению кратковременных импульсных помех при коммутациях сильноточных цепей. В то же время для передачи информации чисто электрическим путем между устройствами – источником и приемником информации – должна быть электрическая связь по корпусу. Если к этому же корпусу подключены силовые цепи, то помехи, вызванные коммутациями в этих цепях, приводят к сбоям в работе других устройств, подключенных к корпусу.

Передача информации с помощью оптронов позволяет развязать электрические цепи питания источника и приемника информации, так как носителем информации является электрически нейтральное оптическое излучение. Таким образом, устройства могут иметь разные корпуса, т.е. оказываются гальванически развязанными и не подверженными воздействию помех.

Кроме защиты от воздействия помех, гальваническая развязка на основе оптронов позволяет решить еще одну задачу – совместную работу устройств, находящихся под разными потенциалами. Любая, даже небольшая, разность потенциалов не позволяет чисто электрически соединять разные устройства, поскольку это приведет к выходу их из строя. Передача сигнала в оптроне возможна, даже если цепи светодиода и фотодиода находятся под разными (в некоторых оптронах до 500 В) напряжениями. Таким образом, устройства, информационно связанные с помощью оптронов, могут находиться под разными потенциалами.

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
Популярные страницы