Дешифраторы

Дешифратор (рис. 20.11) — цифровое устройство комбинационного класса, имеющее п входов, на которые подается «-разрядный двоичный код х 2* xv -го)> и 2" выходов (г/, уг 2,..., г/,, у0).

Дешифратор с п входами и 2 выходами

Рис. 20.11. Дешифратор с п входами и 2й выходами

Напомним, что 2" = N — количество ситуаций, которые могут быть изображены при помощи ^-разрядного двоичного кода. Например, двухразрядному двоичному коду соответствуют четыре различные кодовые комбинации на входе: 00; 01; 10; 11. Каждой из записанных входных кодовых комбинаций должно соответствовать свое, отличное от других, состояние на выходе, определяемое совокупностью значений г/0, г/,, у2, у3.

Условимся о следующем соответствии кодовых комбинаций на входе и выходе дешифратора (табл. 20.1).

Таблица 20.1

Соответствие кодовых комбинаций

Кодовая комбинация на входе (*1. Л'о)

Кодовая комбинация на выходе G/о’ У v УУз)

00

Уо ~У ~ У 2 ~ Уз ~ 0

01

У = иу0 = У2 = Уз = 0

10

О

II

=5

и

и

о

II

гч

11

y-i= ЬУо = У=У2 = 0

Несложно заметить, что согласно принятому в табл. 20.1 соответствию в выходном коде г/0, yv yv у3 присутствует только одна «единица», а остальные позиции представлены «нулем». Это признак унитарного кода «1 из N». Следовательно, дешифратор преобразует двоичный код в унитарный.

Получим уравнение, связывающее логическую функцию на выходе дешифратора с логическими входными переменными, на примере двухразрядного дешифратора на рис. 20.12, а, условное обозначение которого показано на рис. 20.12, б.

Примем во внимание следующие соображения.

Дешифратор на два входа и четыре выхода

Рис. 20.12. Дешифратор на два входа и четыре выхода:

а — реализация на логических элементах-конъюнкторах; б — условное обозначение (DC — decoder)

1. Согласно табл. 20.1 ситуация у0= 1 возникает при х0 = 0, х{ = 0. Это равносильно приравниванию «1» инверсии обеих переменных: х0 = 1, х{ = 1. Тогда состояние на выходе yQ= 1 можно трактовать как логическое произведение величин х0, xv а именно:

Действительно, произведение двух логических переменных равно «единице» только тогда, когда оба сомножителя равны «единице».

2. Ситуация у{ = 1 имеет место, когда х0 = 1, хх = 0, или же х0 = 1, х, = 1. Тогда «единицу» на выходе ух можно считать результатом логического умножения переменных х0 и х{:

3. Рассуждая аналогично, получаем

Соотношения (20.6)—(20.9) реализуются схемой дешифратора на рис. 20.12, а, содержащей четыре конъюнктора (каждый на два входа), выполняющих операции логического умножения. На рис. 20.12, а не показаны два инвертора, необходимые для получения инверсного входного кода 5^,3^.

Дешифраторы могут использоваться как для распознавания заданного двоичным числом адреса, так и для преобразования двоичного кода в десятичный.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >