Компьютерные методы статистического анализа и прогнозирования

Методы анализа зависимостей

Анализ взаимосвязей является важнейшей задачей статистических исследований. Прежде всего необходимо установить наличие взаимосвязей и их характер. Вслед за этим возникает вопрос о тесноте взаимосвязей и степени воздействия различных факторов (причин) на интересующий исследователя результат. Если черты и свойства изучаемых объектов могут быть измерены и выражены количественно, то анализ взаимосвязей может вестись на основе применения математических методов. Использование этих методов позволяет проверить гипотезу о наличии или отсутствии взаимосвязей между теми или иными признаками, выдвигаемую на основе содержательного анализа. Далее, лишь посредством математических методов можно установить тесноту и характер взаимосвязей или выявить силу (степень) воздействия различных факторов на результат.

Функциональная зависимость двух количественных признаков или переменных состоит в том, что каждому значению одной переменной всегда соответствует одно определенное значение другой переменной.

Статистической зависимостью называют зависимость, при которой изменение одной из величин влечет изменение распределения другой, и эти другие величины принимают некоторые значения с определенными вероятностями. Для описания и изучения такого рода зависимостей используется понятие статистической, или корреляционной, связи [1, 14].

Анализ статистической связи предполагает выявление формы связи, а также оценку тесноты связи. Первая задача решается методами регрессионного анализа, вторая — методами корреляционного анализа. Регрессионный анализ сводится к описанию статистической связи с помощью подходящей функциональной зависимости. Корреляционный анализ позволяет оценивать тесноту связи посредством специальных

показателей, причем выбор их зависит от вида функциональной зависимости, пригодной для адекватного описания рассматриваемой статистической взаимосвязи.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >