Термоядерное оружие

В отличие от урановых и плутониевых бомб, материалы на основе лёгких элементов не имеют критической массы, что приводит к большим сложностям при создании ядерного оружия. Однако, при термоядерном синтезе дейтерия и трития выделяется в 4,2 раза больше энергии, чем при делении ядер такой же массы 235U. Поэтому, водородная бомба - гораздо более мощное оружие, чем атомная.

Термоядерное оружие - оружие массового поражения, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия). При этом выделяется колоссальное количество энергии.

Кандидатами на роль применимых термоядерных реакций для водородной бомбы являются:

При температурах, достигаемых в атомных бомбах, реакция (1) проходит в юо раз быстрее, чем реакции (2) и (3) вместе взятые. Это объясняет, почему в первых термоядерных экспериментах участвовал тритий. Реакции (2) и (3), в свою очередь, в ю раз быстрее реакции (4). При этом скорость всех этих процессов (1-4) экспоненциально растёт с температурой. При повышении температуры скорость реакции (4) превышает скорость реакций (2)+(3) вместе взятых. Реакции (5) и (6) не являются термоядерными. Это обычные реакции деления, происходящие при захвате литием нейтрона в нужном энергетическом диапазоне. Зато в их ходе выделяется тритий, который также участвует в процессе. Реакция 6Li + п требует нейтрона с энергией несколько МэВ, 7Li + п - нейтрона не менее 4 МэВ. Используя лёгкую для поджога, но дорогую дейтериево-тритиевую смесь, возможно, инициировать реакцию даже при обычной плотности термоядерного горючего, используя лишь тепло от атомного взрыва (504-100 млн. градусов). Тритий - дорог в производстве (на порядок дороже оружейного плутония), да и к тому же распадается с Т= 12,32 лет. Это делает его мало пригодным к использованию. Остаётся 2Н - дейтерий - вполне доступное горючее для реакций (2) и (з).

Чистый дейтерий был использован лишь однажды - во время испытания Ivy Mike (США). Его недостаток - его нужно очень сильно сжимать или сжижать при криогенной температуре, что непрактично. Проблема решается путём комбинирования дейтерия с литием в LiD. При этом за счёт деления лития производится большое количество трития для реакции (l). Для проведения реакции синтеза нужно: l) обеспечить высокую скорость протекания реакции (т.е. высокую температуру); 2) сохранить предыдущее условие на время, достаточное для протекания реакции; з) обеспечить большой энергетический выход, пропорциональный произведению (скорость реакции) (время её удержания).

Основная идея водородной бомбы (Теллера-Улама) основана на том факте, что при атомном взрыве 8о% энергии выделяется в виде мягких рентгеновских лучей, а не в виде осколков деления. Рентгеновские лучи намного опережают расширяющиеся (со скоростью ~юоо км/с) остатки плутония. Это позволяет использовать их для сжатия и поджога отдельной ёмкости с термоядерным горючим (второй ступени), путём обжатия излучением, до того, как расширяющийся первичный заряд разрушит её.

Термоядерная бомба, действующая по принципу Теллера-Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим. Триггер - это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн. Задача триггера - создать необходимые условия для разжигания термоядерной реакции - высокую температуру и давление.

Двухэтапная схема радиационной имплозии Теллера-Улама

Рис. 6. Двухэтапная схема радиационной имплозии Теллера-Улама.

Компоненты бомбы помещаются в цилиндрический корпус- толкатель в виде цилиндра с пусковым атомным зарядом («триггером») на одном конце. Контейнер с термоядерным горючим - основной элемент бомбы. Его корпус изготовлен из 2з8и - вещества, распадающегося под воздействием быстрых нейтронов (>1 МэВ), выделяющихся при реакции синтеза, и поглощающего медленные нейтроны. Контейнер покрывается слоем нейтронного поглотителя (соединения бора) для предотвращения преждевременного разогрева термоядерного горючего потоком нейтронов от триггера, что может помешать его эффективному обжатию. Внутри контейнера находится термоядерное горючее — 6LiD, и расположенный по оси контейнера плутониевый стержень из ^Ри, играющий роль запала термоядерной реакции. Триггер и контейнер заполняются пластмассой, проводящей излучение от триггера к контейнеру, и помещаются в стальной корпус бомбы. Триггер от цилиндра с горючим отделён защитной крышкой из урана или вольфрама.

После взрыва пускового заряда рентгеновские лучи, испускаемые из области реакции деления, распространяются по пластмассовому наполнителю. Основные составляющие пластмассы - атомы углерода и водорода, которые полностью ионизируются и становятся совершенно прозрачными для рентгеновского излучения. Урановый экран между триггером и капсулой с горючим, а так же сам корпус капсулы предотвращают преждевременный нагрев дейтерида лития. Тепловое равновесие устанавливается чрезвычайно быстро, так что температура и плотность энергии сохраняются постоянными на всём пути распространения излучения.

При взрыве триггера 8о% выделяющейся из него энергии расходуется на мощный импульс мягкого рентгеновского излучения, которое поглощается оболочкой второй ступени. В результате резкого нагрева урановой оболочки происходит унос массы (абляция) вещества оболочки и появляется реактивная тяга, которая вместе со световым давлением обжимает вторую ступень. Явление уноса, подобно огненной струи ракетного двигателя направленного внутрь капсулы, развивает огромное давление на термоядерное горючее, вызывая прогрессирующее его обжатие (диаметр капсулы уменьшается в 30 раз, плотность материала возрастает в 1000 раз). Термоядерное топливо нагревается до температур, достаточных для начала реакции синтеза. Плутониевый стержень переходит в надкритическое состояние и начинается ядерная реакция внутри контейнера. Испускаемые сгорающим плутониевым стержнем нейтроны взаимодействуют с 6Li, в результате чего получается тритий, который взаимодействует с дейтерием. Абляция - унос массы с поверхности твёрдого тела потоком горячих газов, обтекающим эту поверхность. Абляция происходит в результате эрозии, расплавления, сублимации.

Быстрые нейтроны, в избытке имеющиеся при делении триггера, замедляются дейтеридом лития до тепловых скоростей и начинают цепную реакцию в стержне так скоро, как быстро он переходит в сверхкритическое состояние. Его взрыв, действующий наподобие «запальной свечи», увеличивает давления и температуры в центре капсулы, делая их достаточными для разжигания термоядерной реакции. Далее, самоподдерживающаяся реакция горения двигается к внешним областям капсулы с топливом.

Корпус капсулы мешает выходу теплового излучения за её пределы, значительно увеличивая эффективность горения. Температуры, возникающие в ходе термоядерной реакции, доходят до з*ю8К. Для срабатывания этой схемы крайне важны условия симметрии заряда и точного соблюдения условий эффективной лучевой имплозии.

Если оболочка контейнера была изготовлена из природного урана, то быстрые нейтроны, образующиеся в результате реакции синтеза, вызывают в ней реакции деления атомов 2^8U добавляющие свою энергию в общую энергию взрыва. Подобным образом создаётся термоядерный взрыв практически неограниченной мощности, так как за оболочкой могут располагаться ещё другие слои дейтерида лития и слои 2з8и (слойка).

Двухступенчатая схема Теллера-Улама позволяет создавать столь мощные заряды, насколько хватит мощности триггера для сверхбыстрого обжатия большого количества горючего. Для дальнейшего увеличения величины заряда можно использовать энергию второй ступени для сжатия третьей. Вообще, на каждой стадии в таких устройствах возможно усиление мощности в -100 раз.

Термоядерные боеприпасы существуют как в виде авиационных бомб (водородная или термоядерная бомба), так и боеголовок для баллистических и крылатых ракет.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >