Простые и сложные проценты

Рассмотрим пример размещения 100 руб. на банковском депозите под 10% сроком на один год. Текущая стоимость PV составляет 100 руб.

Через год инвестор на вложенный вклад получит 10%, или 10 руб. Сумма денежных средств через год равна сумме вклада плюс накопленные проценты (100 + 10 = 110 руб.). Следовательно, будущая стоимость сегодняшних 100 руб. равна 110 руб.

Будущую стоимость (future value, FV) можно определить но формуле

где PV — текущая стоимость; г — рыночная процентная ставка. В нашем примере будущая стоимость

FV=PV(i + /) = 100 (1 + 0,1) = 110руб.

Если через год инвестор из банка не забирает ни проценты, пи сумму первоначального взноса, а размещает эти средства на депозите сроком еще на один год, то будущая стоимость размещенных средств составит

РУ= 110 (1 + 0,1) = 100 (1+ 0,1) (1 + 0,1) = 100 (1 + 0,1)2= 121 руб.

В общем виде будущую стоимость текущих денежных средств можно представить как

где г — годовая процентная ставка; (1 + г) — коэффициент наращения; п — число лет наращения.

В рассмотренном примере условиями размещения денежных средств предусмотрено, что инвестор вкладывает средства на несколько лет под определенный процент. При этом сумма накопленных процентов не изымается, а остается па счете инвестора, и на нес начисляются проценты.

Однако условия вклада могут быть и иные. Инвестор каждый год забирает накопленные проценты, а проценты за следующий год начисляются только на первоначальную сумму. В зависимости от способа начисления процентов на вложенный капитал различают простые и сложные проценты.

Простые проценты

По отдельным видам финансовых вложений доход начисляется по методу простых процентов. К таким формам инвестиций относятся депозитные сертификаты и облигации, по которым проценты начисляются на номинальную стоимость данных финансовых инструментов. Например, если инвестор приобрел облигацию номинальной стоимостью 1000 руб. со сроком погашения через 1,5 года под 10% годовых, то по окончании срока его доход составит 1000-0,1 х 1,5 = 150 руб.

Таким образом, если годовая ставка составляет 10%, то при методе простых процентов доход инвестора через год составит 10%: через 1,5 года — 15; через 2 года — 20; через 3 года — 30% и т.д.

При начислении простых процентов будущая стоимость определяется по формуле

Рассмотрим пример, когда на вложенные инвестиции доход начисляется по методу простых процентов. Вкладчик размещает 1 млн руб. на депозите сроком на пять лет под 10% годовых. После завершения срока сумма средств, которыми будет располагать инвестор, составит 1(1+ 0,1-5) = 1,5 млн руб., из которых

1 млн руб.— это сумма первоначального взноса и 500 000 руб. представляют накопленные проценты.

Сложные проценты

При проведении финансовых вычислений в большинстве случаев пользуются не простыми, а сложными процентами, начисляемыми не только на первоначальную сумму, но и на сумму процентов, накопившихся за истекший период. В этом случае процентный доход не изымается, а остается на счете и прибавляется к величине первоначального взноса.

В основе метода сложных процентов лежит та же методика начисления ежегодных простых процентов, которые начисляются на первоначальный вклад и накопленную сумму. Будущую стоимость по методу сложных процентов рассчитывают по формуле

Рассмотрим, как изменится сумма вклада в рассмотренном выше примере, если при начислении использовать метод сложных процентов. При размещении на банковском депозите суммы в размере 1 млн руб. сроком на пять лет под 10% годовых конечная сумма при исчислении методом сложных процентов составит

FV= 1 000 000 (1 + 0,1)5= 1 610 510 руб.

Полученная сумма на 110 510 руб. больше, чем сумма, полученная при начислении простых процентов.

Метод сложных процентов всегда интриговал людей. Джон Кейнс назвал этот процесс магией сложных процентов. Действительно, на длительных отрезках времени первоначальные суммы, вложенные под сложный процент, увеличиваются очень существенно. Это хорошо очевидно из табл. 4.1, в которой приведены данные по приросту инвестиций в размере 100 долл. при простом и сложном проценте на 200-летнем отрезке времени.

ИНТЕРЕСНЫЕ ФАКТЫ

  • 1. Английский астроном Френсис Бейли в 1810 г. подсчитал, что если в год рождения Христа положить 1 пенс под 5% годовых, то за эти годы он превратился бы в такое количество золота, которого хватило бы для заполнения 357 млн земных шаров.
  • 2. Остров Манхэттен (США) был приобретен в 1626 г. Питером Минуитом у местных индейцев за сумму, равную примерно 25 долл. США. В настоящее время совокупная стоимость острова исчисляется миллиардами долларов. Однако если бы Питер вложил свои 25 долл. в банк под 7% годовых, то в настоящее время он бы получил 3,6 трлн долл. США, что существенно больше нынешней стоимости острова со всеми сооружениями на нем. Вот к чему приводит принятие однажды неправильного решения.

Таблица 4.1. Стоимость инвестиций в размере 100 долл. на конец года при 10% ставке

Год

Простой процент

Сложный процент

1

110

110

2

120

121

3

130

133

4

140

146

10

200

259

50

600

11 739

100

1100

1 378 061

200

2100

18 990 527 622

Таблица показывает, что в первый год разница в доходе между простым и сложным процентом равна нулю. Затем эта разница начинает незначительно возрастать. Она весьма велика для 50-летнего и громадна для 200-летнего периода.

Для удобства расчета будущей стоимости применяют специальные таблицы, показывающие будущую стоимость денежной единицы через п лет при соответствующей годовой процентной ставке (приложение 1). Фрагмент этой таблицы представлен ниже (табл. 4.2)

Таблица 4.2. Будущая стоимость денежной единицы

Год

Годовая процентная ставка

1

2

...

5

6

...

10

1.1

1

1.010

1,020

1.0.10

1.000

1.100

1,150

2

1,020

1,040

1.102

1.121

1,210

1,323

3

1,030

1,061

1,158

1,191

1,331

1.521

4

1.041

1,082

1,216

1,262

1,464

1,749

5

1,051

1,104

1,276

1,338

1,611

2,011

10

1,105

1,219

1,629

1,791

2,594

4,046

15

1,161

1,346

2,079

2,397

4,177

8.137

20

1.220

1,186

2.653

3,207

6,727

16,37

Пользуясь табл. 4.2, определим, сколько денежных средств будет на счете инвестора, положившего 1000 руб. на банковский депозит под 10% сроком на 15 лет. Мы движемся по столбцу "годы" до строки 15 лет, а затем перемещаемся по этой строке вправо до столбца 10%. На пересечении строки и столбца показано, во что превратится 1 руб. через 15 лет, положенный на депозит под 10% годовых. Эта цифра равна 4,177. Следовательно, для нашего примера будущая стоимость вклада

РУ= 1000-4,177 = 4177 руб.

Динамика изменения первоначального вклада при простом и сложном начислении процентов представлена на рис. 4.3.

Рост стоимости при простом и сложном проценте

Рис. 4.3. Рост стоимости при простом и сложном проценте

При простом проценте увеличение стоимости идет равномерно. Первоначальная сумма инвестиций каждый год увеличивается на одинаковую величину, что иллюстрирует прямая линия. При сложном проценте наблюдается ускоренный рост накоплений. Кривая роста тем круче, чем выше ставка процента и длиннее срок инвестирования.

ИНТЕРЕСНЫЕ НАБЛЮДЕНИЯ .

Правило 72 (удвоение сбережений)

Инвестор приобрел пакет акций компании "Уралкалий" за 10 млн руб., а через четыре года продал его за 20 млн руб., увеличив свой капитал в два раза. Интересно узнать, какую среднегодовую доходность он получил от своих инвестиций, рассчитанную по методу сложных процентов?

"Правило 72" позволяет нам быстро без помощи калькулятора определить доходность этих инвестиций. "Правило 72" гласит: если число 72 разделить на число лет, за которое было достигнуто удвоение инвестиций, то получим процентную ставку, показывающую среднегодовую доходность наших инвестиций. В рассматриваемом примере

Доходность = 72/Число лет = 72/4 = 18%.

Если известна процентная ставка, под которую можно разместить денежные средства на финансовом рынке, то, пользуясь "правилом 72", легко определить, сколько лет должно пройти, чтобы инвестиции удвоились. Например, банк предлагает депозит под 7% годовых. Чтобы рассчитать период удвоения, необходимо 72 поделить на процентную ставку, что в нашем примере составит

Число лет = 72/7 = 10,3 года.

Следует отметить, что "правило 72" дает приближенное значение числа лет и процентов, необходимых для удвоения инвестиций. Например, для удвоения вложений за четыре года необходима годовая доходность в размере 19%, а не 18%, как получилось при использовании "правила 72". Для того чтобы вложения, размещенные под 7% годовых, удвоились, необходимо 10,2 года, а по "правилу 72" получилось 10,3 года. Как видите, разница несущественна, и этот подход вполне может применяться для приблизительной оценки инвестиционных решений.

 
< Пред   СОДЕРЖАНИЕ     След >