Метод исключения Гаусса

Систему уравнений (1.1) представим в виде

Известно большое число схем метода исключения, приспособленных для ручного или машинного счета матриц общего или специального вида.

Метод Гаусса можно интерпретировать как метод, в котором первоначально матрица приводится к верхней треугольной форме (прямой ход), а далее — к единичной (обратный ход). Очевидно, что если матрица единичная, то xt = br

Пусть матрица системы (1.3) — верхняя треугольная, поэтому atj = 0 при i > j, т. е. все элементы ниже главной диагонали равны нулю. Тогда из последнего уравнения сразу определяем хп. Подставляя хп в предпоследнее уравнение, находим ха_ х и т. д. Общие формулы имеют вид

При k > I коэффициенты аы = 0.

Приведем матрицу системы (1.3) к верхней треугольной. Вычтем из второго уравнения системы (1.3) первое, умноженное на такое число, при котором коэффициент при хх обратится в нуль. То же проделаем со всеми остальными уравнениями. В результате все коэффициенты первого столбца, лежащие ниже главной диагонали, обратятся в нуль. Затем, используя второе уравнение, обратим в нуль соответствующие коэффициенты второго столбца. Последовательно продолжая этот процесс, приведем матрицу системы к верхней треугольной форме.

Запишем общие формулы метода Гаусса. Пусть проведено исключение коэффициентов из (А - 1)-го столбца. Тогда останутся уравнения с ненулевыми элементами ниже главной диагонали:

Умножим k-ю строку на число стк = т > k и вычтем

из m-й строки. Первый ненулевой элемент этой строки обратится в нуль, а остальные изменятся по формулам

Проведя вычисления по этим формулам при всех указанных индексах, обратим в нуль элементы k-ro столбца, лежащие ниже главной диагонали. Аналогичная процедура приводит матрицу системы к верхней треугольной форме, при этом весь процесс приведения называется ПРЯМЫМ ХОДОМ МЕТОДА ГАУССА. Вычисление неизвестных по формулам (1.4) называют ОБРАТНЫМ ХОДОМ метода.

Обратный ход можно совершить иначе, если обратить в нуль и все коэффициенты, лежащие выше главной диагонали. Например, элементы п-го столбца обращаются в нуль, если ej^| умножить на (-a^Va<„"n) и сложить с соответствующей строкой. Аналогично обращаются в нуль и все остальные столбцы. Если, кроме того, разделить затем каждое уравнение на соответствующий элемент, стоящий на главной диагонали, то матрица системы становится единичной, а неизвестные xt = б|2л), где Ь^п) — коэффициенты правой части i-го уравнения после указанных преобразований.

На некотором шаге прямого хода может оказаться, что коэффициент aj*' * 0, но мал по сравнению с остальными элементами матрицы системы и, в частности, мал по сравнению с элементами первого столбца. Деление коэффициентов системы на малую величину может привести к значительным ошибкам округления.

Для уменьшения ошибок округления поступают следующим образом. Среди элементов первого столбца а ^ каждой промежуточной матрицы выбирают наибольший по модулю (главный) элемент и путем перестановки i-й строки со строкой, содержащей главный элемент, добиваются того, что главный элемент становится ведущим. Такая модификация метода исключения Гаусса называется методом Гаусса с выбором главного элемента. Случай появления нулевых элементов обходится при этом сам собой.

Для реализации метода требуется примерно п3/3 операций типа умножения и п3/3 операций типа сложения[1]. Полезно помнить, что оценка числа операций определяется в основном операциями, затрачиваемыми при выполнении прямого хода метода Гаусса. Обратный ход метода Гаусса требует примерно п2 операций. Следовательно, если требуется решить несколько систем линейных алгебраических уравнений вида Ах = b с одной и той же матрицей и различными правыми частями, то общее число операций при решении S систем будет оцениваться величиной (2/3)п3 + Sn2. В этом случае целесообразно реализовать алгоритм метода Гаусса в виде двух подпрограмм: первая подпрограмма должна реализовывать прямой ход алгоритма и получать на выходе верхнюю треугольную матрицу, а вторая подпрограмма должна, используя полученную матрицу, вычислять решение системы для произвольной правой части.

  • [1] Под операциями типа сложения подразумеваются операции сложения, вычитания, взятия модуля, а также отделения целой части.
 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >