Метод стрельбы

Рассмотрим метод стрельбы на примере решения дифференциального уравнения второго порядка

Основная идея метода стрельбы заключается в сведении решения краевой задачи (3.44)—(3.446) к решению серии задач Коши.

Чтобы поставить задачу Коши для уравнения (3.44), необходимо в какой-либо одной точке отрезка задать два дополнительных условия. В точке а известно одно дополнительное условие и(а) = а. Поэтому зададим в этой точке значение производной функции и'(а). Так как это значение заранее неизвестно, то зададим его равным некоторому произвольному значению г|. В результате получим задачу Коши

Решая эту задачу Коши каким-либо численным методом, получаем ее решение и(х, ц), зависящее от т| как от параметра. Так как значение г| выбрано произвольно, то решение задачи Коши удовлетворяет условию краевой задачи в точке а и не удовлетворяет ее условию в точке Ь. Таким образом, необходимо менять параметр г| таким образом, чтобы решение задачи Коши в точке Ь совпадало с условием (3.446). Следовательно, решение краевой задачи сводится к нахождению корня нелинейного алгебраического уравнения

При этом функция Р(ц) задана не аналитически, а в виде таблицы чисел, которая составляется при решении серии задач Коши. Решение уравнения (3.46) можно искать методом дихотомии. Делают пробные выстрелы, т. е. решают задачу Коши с разными значениями г| до тех пор, пока среди величин (и(Ь, ц) - Р) не окажется двух разных по знаку. Пара соответствующих значений /Дц) делится пополам и находится новое значение т), с которым решается задача Коши. Такая процедура повторяется до получения условия (3.456) с необходимой точностью.

Для ускорения сходимости к корню уравнения (3.46) можно применять другие методы, например метод секущих. Для этого делают два расчета с произвольными значениями г|<°> и т](1), а следующие значения г| вычисляют по формуле

Простота алгоритма метода стрельбы и возможность использования стандартных программ решения задачи Коши позволяют успешно применять его при решении как линейных, так и нелинейных дифференциальных уравнений.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >