Цилиндрические координаты

В цилиндрической системе координат координатами являются радиус г, угол 0 и расстояние вдоль оси цилиндра z. Связь цилиндрических координат с декартовыми выражается соотношениями: *=rcos0, y=rsin0. В этом случае выражение для 2-го закона Фика принимает вид:

При постоянном коэффициенте диффузии:

Неограниченный цилиндр.

Если распределение концентрации зависит только от радиуса ги не зависит от координат 0 и z, будет иметь место случай цилиндрической (аксиальной) симметрии; диффузия в этом случае подчиняется уравнению:

При D=const это уравнение преобразуется к виду:

Конечный цилиндр:

где 0 - азимутальный угол, z - направление оси цилиндра.

Пластина:

В общем случае дифференциальное уравнение диффузии при постоянном коэффициенте D для любых координат ?=1,2,3:

где параметр v определяет геометрию образца.

В частном случае

v=o, -r00 - цилиндр с непроницаемой боковой поверхностью (таблетка, пластина);

v=i, о<г<г0 - цилиндр с непроницаемыми торцами;

v=i, Го1<.г^г02 - полый цилиндр с непроницаемыми торцами;

v=2, 0<г<го - сфера (шар);

v=2, Го1<г<г02 - полая сфера (сферическая оболочка).

При наличии химической реакции первого порядка между диффу- зантом и средой, диффузионное уравнение принимает вид:

где к - постоянная необратимой химической реакции i-го порядка (с*1).

Это уравнение описывает диффузию при наличии стока (вывода из диффузионного процесса) диффундирующих частиц (как результат химической реакции или радиоактивного распада атомов диффузанта).

В ходе процесса диффузии диффузант может возникать в результате химических или ядерных процессов, распадаться, вступать в химические реакции или захватываться дефектами. Такие процессы описывают уравнения с источниками и стоками:

где FiH F2- функции источников и стоков, соответственно.

Если сток - необратимая химическая реакция i-го порядка, то F2=kC, а если радиоактивный распад, то F2=XC.Подобное уравнение используется при описании диффузии короткоживущих радионуклидов (а также рядов генетически связанных радионуклидов). Таким же уравнением описывается диффузия при наличии временного удержания атома диффузанта в ловушке (например, в дефекте).

В многокомпонентных системах возможны разнообразные взаимопревращения компонентов, например химические превращения веществ в ходе реакций. С учётом химических превращений в каждой точке системы, уравнения процесса имеют вид:

Вид функциональной зависимости скорости химической реакции определяется механизмом реакции, в общем случае функция /зависит как от концентраций реагирующих веществ, так и явно от пространственной координаты ;• и времени t. Если /| не зависит от времени и координаты, то fi=fi(ChC2,...,Cn)

Подобные уравнения используются для описания эволюции системы реакция-диффузия, сопровождающейся сильной неустойчивостью, автоволновыми колебаниями и возникновением диссипативных структур.

Если в процессе диффузии происходит локализация диффундирующих молекул, т.е. молекула проводит некоторое время в связанном состоянии, а потом продолжает свой путь, то:

Например, если диффузия сопровождается адсорбцией диффузанта на поверхности микропор в соответствии с законом Ленгмюра, то характеристическая функция адсорбции:

носит название уравнение Лапласа (уравнение эллиптического типа).

При решении диффузионных уравнений обычно выделяют три вида тел: неограниченно простирающаяся от источника во все стороны среда (бесконечное тело), простирающаяся в одном направлении среда (полубес- конечное тело) - в этом случае в удаленных точках концентрация равна нулю в ходе всего диффузионного эксперимента, и ограниченная по всем направлениям среда (в конечном итоге диффузант занимает все пространство). В последнем случае решение диффузионного уравнения зависит от геометрии среды - пластина, цилиндр, шар и т.п.

Основным законом, определяющим максимальное количество вещества, которое можно ввести в твёрдое тело, является закон Генри:

С=Гр,

где Г - константа растворимости, р - парциальное давление газа в системе. Константа растворимости считается независящей от давления газа, но на практике это выполняется в сравнительно узком интервале давлений. Закон Генри применим только к одноатомным газам.

От температуры константа растворимости зависит по закону Аррениуса:

Г=Гоехр(ДН/Я70.

Как правило, ДН>о, поэтому с ростом температуры константа растворимости уменьшается.

В случае диффузии двухатомного газа, распадающегося на атомы при вхождении в твёрдое тело (например, диффузия водорода в палладии, или диффузия кислорода в серебре), справедлив закон Сивертса:

При справедливости закона Генри константа растворимости определяется как объём газа в кубических сантиметрах, приведенный к стандартной температуре и давлению, который растворён в 1 смз твёрдого тела при температуре опыта, если давление газа равно 1 атм.

В стационарном состоянии поток одноатомного флюида:

Введём обозначение: константа проницаемости Р=ГД

тогда для одноатомного флюида константа проницаемости:

Для двухатомного газа:

Константа проницаемости, Р, играет важную роль при изучении прохождения газа через мембрану.

В системе СИ:

От температуры константа проницаемости зависит по закону Аррениуса:

Р=Р0ехр(-Р/>/РТ),

гд,еЕр=Ер-АН.

Таким образом, в зависимости от знака Ер константа проницаемости может как увеличиваться, так и уменьшаться с ростом температуры. Может возникнуть ситуация, когда константа проницаемости вообще не зависит от температуры.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >