Температура наибольшей плотности. Солоноватые и морские воды

В предыдущих пунктах было обращено внимание на то, что зависимость плотности (удельного объема) от температуры и солености является нелинейной. Такая зависимость обуславливает ряд нелинейных свойств морской воды. К ним относится и наличие у воды в определенном диапазоне солености максимума плотности. Однако важно знать не саму максимальную плотность, а температуру, при которой она достигается.

Изопикническая (термохалинная) производная dS/dT (епс °C) как функция солености и температуры при атмосферном давлении (а), давления и температуры при S=35 епс (б)

Рис. 4.9. Изопикническая (термохалинная) производная dS/dT (епс °CJ) как функция солености и температуры при атмосферном давлении (а), давления и температуры при S=35 епс (б)

Большое значение температуры наибольшей плотности Тт объясняется ее значительным влиянием на вертикальную устойчивость и перемешивание вод в морях и океанах. Температура наибольшей плотности Тт определяется как температура, при

dv

которой градиент термического расширения — равен нулю.

дТ STp

Температура Т„ чистой воды при атмосферном давлении равна 3,982° С, с увеличением давления она уменьшается. Для морской воды температура наибольшей плотности уменьшается как с увеличением давления, так и солености (рис. 4.10). В условиях термодинамического равновесия экстремум плотности (удельного объема) существует только в той области солености и давления, в которой температура наибольшей плотности Т„ больше или равна температуре замерзания 7} (см. раздел 7.1), т. е. Tm > Tf [67].

Зависимость температуры наибольшей плотности и температуры замерзания морской воды (°С) от солености (епс) и давления (дбар)

Рис. 4.10. Зависимость температуры наибольшей плотности и температуры замерзания морской воды (°С) от солености (епс) и давления (дбар)

Это обусловлено тем, что температура наибольшей плотности уменьшается с увеличением солености и давления быстрее, чем температура Т/°. Предельное давление существования наибольшей плотности в условиях термодинамического равновесия примерно равно 270 бар, при котором Tm=T/=-2° С. В областях, где Tm термодинамическое равновесие не выполняется, так как замерзание начинается раньше достижения максимальной плотности при охлаждении.

Точка пересечения линий температуры наибольшей плотности и температуры замерзания (Tm=Tj) называется критической. При атмосферном давлении (т. е. на поверхности) критическая точка наблюдается при солености 24,6 (рис. 4.10).

Морская вода с соленостью меньшей 24,6, как и пресная, имеет температуру наибольшей плотности выше температуры замерзания. При солености выше 24,6 соотношение температур Тт и 7} обратное. Однако в реальных условиях температура наибольшей плотности в этом случае не может быть достигнута, так как вода не охлаждается ниже температуры замерзания. По предложению Н.М. Книповича, эти два типа вод называются соответственно солоноватыми и морскими. С глубиной соленость критической точки уменьшается и становится равной нулю при давлении «270 бар [67].

Различия в соотношениях температур Тт и 7} обуславливают различия в протекании некоторых процессов в солоноватых и морских водоемах, в частности процесса конвективного перемешивания. В солоноватых водах конвективное перемешивание начинается сразу при начале охлаждения поверхностных вод и продолжается до момента, когда температура охваченного ею слоя достигает температуры наибольшей плотности. Затем перемешивание до дна прекращается. В морских водах при охлаждении моря конвективное перемешивание не прекращается вплоть до достижения температуры замерзания, поэтому конвекция может достичь больших глубин. [1]

Температуру наибольшей плотности можно определить, приняв коэффициент термического расширения равным нулю, так как в него входит частная производная удельного объема (плотности) по температуре. Тогда, с учетом (4.2) и (4.14), и проведя некоторые упрощения, получим:

Чтобы из уравнения (4.35) получить температуру наибольшей плотности, необходимо решить полученное уравнение относительно температуры по заданным значениям солености и давления. Для его решения можно воспользоваться методами численного решения алгебраических уравнений [1].

Вычислить температуру наибольшей плотности можно также и по эмпирической формуле Д. Колдуэлла [50]:

где S - соленость, %о; р - давление, бары. Отметим, что Тт по Д. Колдуэллу ниже, чем по данным УС-80, примерно на 0,1-0,2° С в диапазоне практической солености от 0 до 40 при атмосферном давлении.

  • [1] Теоретическое объяснение этому факту может дать сравнение формулКельвина (4.74) и Клаузиуса-Клапейрона (6.16), связанных между собойаналитически.
 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >