ВОДООБМЕН ОЗЁР И ВОДОХРАНИЛИЩ

ПРОЦЕССЫ ВНЕШНЕГО ВОДООБМЕНА

Вследствие глобального водообмена практически в каждой замкнутой форме рельефа суши происходит накопление атмосферных осадков и возникновение водоёма. Часть осадков выпадает на поверхность водоёма, а другая часть - на поверхность его водосбора, откуда она стекает в водоём в виде поверхностно-склоновых, русловых и подземных вод тех водоносных слоёв грунтовой толщи водосбора, которые выклиниваются в озёрной котловине (рис. 3.1) или в ложе водохранилища.

Как только в котловине появляется водная поверхность, возникает еще пара одновременно идущих процессов внешнего водообмена на водной поверхности: испарение воды и её конденсация из атмосферных водяных паров. Но интенсивность этих двух процессов различна и сильно изменяется в зависимости от термодинамических условий на границе вода-атмосфера. В периоды, когда скорость потери испаряющейся воды с её поверхности больше скорости её возникновения из пара, составляющую внешнего водообмена называют испарением, и выражают в слое воды в единицу времени (мм/сут или мм/год), ушедшей в атмосферу. В другие периоды, когда преобладает скорость поступления влаги из воздуха - эта составляющая называется конденсацией и вычисляется в таких же единицах.

Рис. 3.1. С хема формирования водных ресурсов озера (У) и его водосбора (2). Рв и Ев- выпадение осадков на водосбор и испарение воды с него; Inf- инфильтрация воды в фунты; Р0 и Е0 - осадки на озеро и испарение с него; К- приток воды с водосбора и Y- сток се из озера; водоносный горизонт (3), вскрытый профундалью (4)

Соотношение скоростей всех процессов внешнего водообмена водоёма в гидрологии принято характеризовать уравнением его водного баланса за некоторый период времени. В наиболее общей форме осредненный за многолетний период годовой водный баланс водоёма рассчитывается обычно в объёмных единицах, в км3/год или млн. м3/год, и имеет вид:

где V - суммарный объём руслового, склонового и подземного стока воды с водосбора в водоём, Р0 - объём выпавших на водоём атмосферных осадков и ?о - объём испарившейся с него воды. Как правило, за год с любого водоёма количество испарившейся воды многократно превышает объём сконденсировавшейся влаги, поэтому конденсация в уравнении не учитывается. В некоторых озёрах, расположенных в местности с неровным рельефом, может иметься еще одна расходная составляющая внешнего водообмена - фильтрация воды из озерной чаши в водоносные слои грунтовой толщи на склонах, но обычно её скорость неизвестна.

В зависимости от размеров озёрной котловины, размеров её водосбора, географического местоположения такой природной системы возникает один из трёх вариантов соотношения интенсивности составляющих внешнего водообмена, т. е. одна из трёх структур внешнего водообмена водоёма.

Первый вариант может быть такой, что суммарный приход воды за многолетний период меньше, чем величина её испарения с водной поверхности:

Такая структура водного баланса характеризует условия существования пересыхающего озера. В многоводные гидрологические фазы стока приход воды больше её расхода на испарение, и вода в котловине накапливается, а в маловодные фазы испарение настолько велико, что вода полностью испаряется.

Второй вариант соотношения компонент внешнего водообмена:

Это - уравнение водного баланса бессточного озера. В относительно очень крупной котловине в многоводные периоды уровень воды повышается, а в маловодные - снижается из-за испарения, превышающего приход воды в котловину. Самое крупное такое озеро - Каспийское море.

Существенно то, что в многоводные фазы речного стока, чем выше поднимется в котловине уровень воды, тем больше увеличится площадь водной поверхности, с которой испаряется вода, тем больший объём ее испарится. В маловодные фазы, когда мал приход воды, и велико испарение, понижение уровня ведет к сокращению площади испаряющей водной поверхности, что тормозит сокращение запаса воды в водоёме. Таким образом, форма озёрной котловины служит стабилизирующим фактором колебаний уровни и запаса воды в водоёмах. Чем более она подобна распластанному конусу и даже сверхконусу, тем меньше, при прочих равных условиях, размах колебаний запаса воды в водоёме и уровня воды в нём. Тем более устойчива его экосистема к межгодовым колебаниям гидроклиматических условий, определяющих интенсивность внешнего водообмена в континентальном водоёме.

Третий вариант структуры водного баланса водоёма возникает тогда, когда приход воды в котловину существенно больше величины испарения V+ Р0 »?<> Если величина притока очень большая, уровень воды в котловине повышается, несмотря на увеличение испаряющей площади водной поверхности. И наступает момент, когда уровень воды в водоёме, поднимаясь, превысит минимальную высотную отметку водораздела котловины. В этом месте вода начинает переливаться в соседний водосбор, формируя исток озёрной реки. В структуре водного баланса озера появляется вторая расходная составляющая - сток воды Y:

Это- уравнение водного баланса сточного озера. Такова структура внешнего водообмена и проточного озера. Его так называют, если оно сравнительно невелико, а среди его притоков имеется одна крупная река, сохраняющая обычно свое название и в истоке из озера. Например, проточные озера Стерж, Вселуг, Пено и Волго в верхнем течении Волги.

В сточных озёрах, наряду с морфометрическим, возникает второй стабилизирующий фактор - гидравлический, ограничивающий в них размах колебания уровня воды. Исток озёрной реки в гидравлическом отношении представляет собой порог природного водослива. Величина расхода воды, стекающей через него, есть функция высоты уровня Н над порогом и формы поперечного сечения водослива:

где и - показатель степени, характеризующий изогнутость параболы Q = /(//). Чем выше поднимается уровень воды в сточном озере, тем больше её расход в истоке реки. Причем скорость увеличения расхода при подъёме уровня возрастает от водослива прямоугольного профиля (л = 3/2) к водосливу в виде полуокружности (/? = 2) и ещё больше, если водослив - треугольной формы (п = 5/2).

И именно эти два стабилизирующих фактора - морфометрический и гидравлический, связанный с формой русла в истоке озерной реки, - приводят к тому, что как бы ни были велики колебания интенсивности приходных составляющих и испарения во внешнем водообмене, устанавливается в конце концов равновесие между приходом и расходом воды в озере. Чем выше растет уровень, тем сильнее увеличиваются и испарение, и сток из озера. Поэтому в котловине любой формы, независимо от се размера, обязательно в многолетний период с относительно неизменным климатом наступит момент равновесия приходных и расходных частей водного баланса.

При установившемся равновесии внешнего водообмена в озере устанавливается и высотная отметка уровня воды, некоторая средняя для многолетнего периода, в течение которого имеется равенство осредненных за тот же период приходных и расходных компонент водного баланса. Такой водный баланс называется равновесным при соответствующем ему уровне равновесия (иногда его называют уровень тяготения).

В многоводный и маловодный годы в сточном озере происходит только понижение или повышение его уровня относительно уровня равновесия. Причем отклонения от него сравнительно небольшие благодаря двум стабилизирующим факторам, регулирующим интенсивность двух процессов расхода воды из озера. Не может быть бесконечного наполнения озёрной котловины, а её осушение возможно только в аридных районах вследствие природных условий, при которых величина испарения с водной поверхности существенно больше, чем увлажнение территории водосбора.

Таким образом, равновесный уровень и равновесный водный баланс - это некая модель озёрной экосистемы, которая характеризует интенсивность и структуру внешнего водообмена при гидроклиматических условиях того или иного многолетнего периода. Это свойство озёрного водного баланса - в течение некоторого многолетнего периода быть относительно равновесным - впервые использовал Воейков[1] для оценки средней годовой величины испарения воды с Каспия. Для этого им были использованы данные гидрометрических наблюдений за стоком Волги и за атмосферными осадками на побережье Каспия. Этот расчет им сделан в 1884 г., за год до лондонского конгресса, на котором были сформулированы задачи лимнологии.

Внешний водообмен любого водоёма суши состоит из вертикальных и горизонтальных компонент. Вертикальные компоненты - это осадки, выпадающие на водную поверхность, и испарение, т. с. водообмен водоёма с атмосферой. Горизонтальные составляющие - приток и сток воды из озера - это водообмен водоёма в составе гидрографический системы. Чтобы разделить эти структурные компоненты внешнего водообмена, часто уравнение водного баланса сточного водоема представляют:

V-Y=[(z-X)/°]xFo(H), ^ (3.6)

где V - У - разность суммарного притока воды и её стока, в км/год, (z - х)- разность средних годовых слоёв испарения воды z с водоема и атмосферных осадков х, в мм/год, на его поверхность площадью F0, в км", изменяющуюся в зависимости от отметки уровня (Я). При этом разность интенсивности вертикальных составляющих внешнего водообмена называют видимое испарение. В гумидных регионах, где годовой слой осадков больше, чем слой испарения с водной поверхности, видимое испарение имеет отрицательное значение.

  • [1] Воейков Александр Иванович (1842-1916), член-корр. Петербургской АН, основоположник российской климатологии, автор монографии «Климаты темного шара, в особенности России» (1984) и первой классификации рек по их гидрологическому режиму.
 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >