Меню
Главная
Авторизация/Регистрация
 
Главная arrow Строительство arrow СТРОИТЕЛЬНАЯ МЕХАНИКА
Посмотреть оригинал

Примеры применения смешанного метода

Рассмотрим применение смешанного метода на примерах расчета рам.

Пример 1. Построим окончательную эпюру моментов Мр в системе, изображенной на рис. 10.2, а. На этом же рисунке показаны нагрузка, все размеры и значения жесткостей элементов. Основная система изображена на рис. 10.2, б. В качестве неизвестных приняты силы Х в точке 5 и угол поворота Z2 заделки, поставленной в узле 2. Эпюра от единичной силы Х] = 1 показана на рис. 10.2, в. Естественно, что эпюра М[ распространяется только на правую часть рамы до заделки. Эпюра М2 от единичного поворота заделки (рис. 10.2, г) распространяется в пределах стержней 0—1 и 1—2. Пунктирной линией показан

Рис. 10.2

наклон консоли 1—3—4—5 от поворота заделки. Перемещение точки 5 по вертикали, т.с. по направлению силы Xt, равно углу поворота Z2 = 1, умноженному на плечо 1—5. Так как э го перемещение совпадает с направлением действия силы Х = 1, то оно положительное, 6i2 = 6. По эпюре М момент в заделке от Х = 1 равен 6. Этот момент стремится повернуть заделку по ходу часовой стрелки, т.е. в направлении поворота заделки, на Z2 = 1. Однако нам необходимо определить реактивный момент в заделке, т.е. момент, действующий на заделку в узле 1, который будет равен также 6, но со знаком «минус». Итак, г21 = = -6. Таким образом, убеждаемся в справедливости равенства

(10.2): r21 = -8j2.

По эпюре М находим

По эпюре М2 находим

По эпюре МР легко определяем

Знак у величины R>p установлен так же, как при определении r2i.

Канонические уравнения смешанного метода принимают вид

Умножив все члены первого уравнения на EJ/2, получим

откуда легко находим X] = -5,75 кН; Z2 = 0,5/(?/).

_На рис. 10.2, ей ж показаны исправленные эпюры МХ и A/2Z2, сумма которых вместе с эпюрой от нагрузки (рис. 10.2, д) составляет окончательный результат — эпюру Мр (рис. 10.2, з).

Решение по смешанному методу оказалось очень простым. Если для расчета применять метод сил, то вместо двух уравнении придется решить четыре уравнения, значительно возрастет и объем вспомогательных вычислений. Еще более трудоемко решение по методу перемещений — потребуется решить пять уравнений с пятью неизвестными.

237

Пример 2. В раме, показанной на рис. 10.3, а, число неизвестных по методу сил 7, по методу перемещений 3, по смешанному методу 2. Жесткость наклонного элемента равна 5?//6, а всех остальных — Е). Основная система показана на рис. 10.3,6, эпюры моментов от неизвестных Zt и Х2 изображены на рис. 10.3, в и г, эпюра Мр от нагрузки — на рис. 10.3, д. По эпюрам находим

Канонические уравнения будут

Рис. 103

Решая два уравнения с двумя неизвестными, получим Z = = -3,859/(#); Х2 = 0,239.

Пользуясь формулой Мр = Mp+M + М2Х2, строим окончательную эпюру Мр (рис. 10.3, в).

Читателю предлагается проверить правильность построенной эпюры МР. Наиболее просто это выполнить, подсчитав площади эпюры по каждому из двух замкнутых контуров 0—1—2 и 2-1-3.

 
Посмотреть оригинал
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Популярные страницы