Механизм ДТП

Это комплекс связанных объективными закономерностями обстоятельств, определяющих процесс сближения ТС с препятствием перед ударом, взаимодействие его с препятствием при нанесении удара и последующее движение ТС и других отброшенных ударом объектов до остановки.

Из определения понятия механизма происшествия следует, что его можно подразделить на три стадии:

  • 1) сближение ТС с препятствием;
  • 2) взаимодействие его с препятствием;
  • 3) перемещение ТС и других объектов после удара.

Поскольку конечной целью экспертного исследования механизма происшествия является установление данных, позволяющих дать оценку действиям водителя по предотвращению наступлени я вредных последствий, основное значение имеет установление того, что произошло в первой стадии механизма происшествия, т.е. когда водитель мог и должен был оценить дорожную обстановку как опасную и принять необходимые меры.

В дальнейшем события развиваются под действием неодолимых сил, независимо от действий водителя. Необходимость в анализе происшедшего во второй или в третьей стадии механизма происшествия может возникнуть лишь для того, чтобы установить или уточнить то, что произошло на первой стадии, а также для проверки различных версий.

В зависимости от конкретных обстоятельств происшествия при исследовании первой стадии механизма происшествия может появиться надобность установить, как двигалось ТС с момента возникновения опасности и до удара: в каком направлении, по какой траектории, каков был характер его движения (при свободном качении или в заторможенном состоянии, прямолинейно или с поворотом, заносом), какие обстоятельства способствовали такому движению (переезд через неровности, наезд на бордюр, контактирование с другими объектами, повреждения ходовой части и т.п.). Все эти обстоятельства могут быть выявлены при экспертном исследовании места происшествия и ТС.

Перед местом, где произошел наезд ТС на препятствие, могут оставаться следы качения колес, торможения, заноса, на местных предметах (бордюрах, деревьях и т.п.) — следы контакта (при- тертости, повреждения), в местах, откуда начиналось движение ТС, — пятна от выхлопных газов, следы подтекания жидкостей и т.п. Если такие следы были зафиксированы с достаточной точностью при осмотре места происшествия или обнаружены непосредственно экспертом, то представляется возможным определить траекторию и характер движения ТС перед наездом на препятствие, а исследование технического состояния ТС (тормозов, рулевого управления, ходовой части) позволяет выяснить и причины такого движения (является ли оно результатом неисправностей или вызвано действиями водителя).

Во второй стадии механизма происшествия значительная часть кинетической энергии движения расходуется на деформацию частей ТС и препятствия в процессе их взаимного внедрения. Происходят резкое изменение направления и скорости движения ТС и препятствия, а также перераспределение нагрузки на колесах ТС.

На препятствиях, поверхности дороги и ТС возникают следы, дозволяющие установить механизм взаимодействия ТС и препятствия в процессе их контактирования и расположение места удара.

Основными задачами исследования второй стадии механизма происшествия в зависимости от конкретных обстоятельств происшествия являются установление расположения ТС и препятствия в момент удара, перемещения их в процессе контактирования, определение направления удара и направления движения ТС и других объектов непосредственно после удара, выявление возникших при ударе сил инерции, действовавших на различные объекты. Установление этих обстоятельств позволяет эксперту во многих случаях решать вопросы, касающиеся того, что произошло в первой стадии механизма происшествия, когда он не располагает достаточными данными о следах, оставшихся на месте происшествия до наезда (столкновения).

Взаимное внедрение ТС и препятствия протекает при последовательном входе в контакт различных участков ТС с препятствием в процессе их деформации и разрушения. Силы взаимодействия возникают в разные моменты времени на разных участках, изменяясь по величине (возрастая по мере увеличения глубины внедрения или резко уменьшаясь при разрушении воспринимающей усилие детали). Поэтому образование деформаций на ТС и других объектах и последующее их перемещение от места удара происходит под действием импульсов множества сил взаимодействия в различных контактировавших при ударе точках.

Направление вектора равнодействующей импульсов этих сил можно определить лишь приближенно, исходя из основного направления деформаций частей ТС на участке контактирования и направления разворота последнего после удара. Следует иметь в виду, что вектор равнодействующей в зависимости от конкретных условий взаимодействия ТС с препятствием может отклоняться от направления относительной скорости (скорости сближения) как в горизонтальном, так и в вертикальном направлении.

Отклонение равнодействующей в горизонтальном направлении возникает, когда при скользящем ударе в полосе перекрытия ТС и препятствия не происходит полного разрушения контактировавших частей и возникают усилия, раздвигающие контактирующие участки ТС и препятствия. Направление разворота ТС после удара будет зависеть от величины этого отклонения (от направления равнодействующей по отношению к центру тяжести ТС).

Отклонение равнодействующей в вертикальном направлении возникает, когда препятствие как бы подлезает под воздействующие на него части ТС. Наличие значительной вертикальной составляющей может повлиять на перемещение ТС и препятствия после удара, так как при этом будут изменяться силы сопротивления их смещению по опорной поверхности.

При тех скоростях ТС, когда возникают ДТП, время взаимного внедрения ТС и препятствия при ударе весьма мало (измеряется сотыми долями секунды). Тем не менее, при эксцентричных ударах, ТС успевают развернуться на некоторый угол благодаря тому, что возникающие при ударе силы измеряются тоннами и десятками тонн. В большинстве случаев величиной этого угла можно пренебречь. Но в некоторых случаях, когда глубина взаимного внедрения достаточно велика, при установлении взаимного расположения ТС и препятствий в момент удара следует внести поправку исходя из сообщенной ТС угловой скорости, которая может быть определена по развороту его после удара.

При исследовании механизма взаимодействия ТС и препятствий при ударах влиянием упругих деформаций следует пренебречь ввиду их ничтожной малости. Об этом свидетельствуют результаты многократно проведенных экспериментов, когда после удара в неподвижную стальную плиту со скоростью 50 км/ч автомобили оставались расположенными вплотную к этой плите; следовательно, энергия упругих деформаций была недостаточной даже для того, чтобы сместить незаторможенный автомобиль с места удара.

Некоторое влияние на перемещение ТС после удара упругие деформации могут оказать лишь при весьма низких скоростях, когда не возникает существенных деформаций, особенно при контактировании с шинами колес.

В третьей стадии механизма происшествия происходит перемещение ТС благодаря оставшейся после удара кинетической энергии и отбрасывание объектов, с которыми контактировало ТС, за счет приобретенной после удара скорости.

Направление движения центра тяжести ТС непосредственно после удара может быть определено в ходе автотехнических исследований исходя из закона сохранения количества движения или по направлению оставленных следов, но крайней мере, двумя его колесами.

При отбрасывании заторможенного ТС направление движения его центра тяжести остается практически постоянным, если участок дороги горизонтальный, без существенных неровностей. Криволинейность оставляемых им следов на гаком участке может быть следствием его разворота вокруг центра тяжести иод воздействием полученного эксцентричного удара.

При отбрасывании незаторможенного ТС направление движения его центра тяжести меняется, если движение происходит под углом к его продольной оси или при повернутом рулевом колесе, т.е. под углом к плоскости вращения колес. В таких случаях в процессе проскальзывания будет происходить отклонение движения в сторону плоскости вращения колес.

В начальный момент, когда скорость проскальзывания велика, ТС перемещается в направлении, близком к первоначальному после удара, оставляя характерные следы заноса. По мере падения скорости отклонение в сторону плоскости вращения колес происходит более резко и тем резче, чем меньше угол между направлением движения и продольной осью ТС.

С уменьшением этого угла следы колес на твердых покрытиях становятся менее заметными или вообще исчезают (при углах менее 20—30°) в зависимости от состояния покрытия.

Остающиеся на месте происшествия следы перемещения ТС после удара — следы колес, трассы и выбоины, оставленные поврежденными частями его, расположение отделившихся в процессе перемещения деталей и других объектов — позволяют судить о том, в каком направлении перемещалось после удара ТС, как происходил разворот, а с учетом других признаков — уточнить его движение до удара и расположение в момент удара.

Кроме следов, оставляемых ТС на месте происшествия, возникают следы перемещения отбрасываемых объектов (выпавшего груза, сорванных деталей, тел пострадавших при происшествии и др.). В большинстве случаев такие следы бывают малозаметными и редко фиксируются при осмотре места происшествия. Однако они могут иметь большое значение для установления механизма происшествия, когда следы ТС недостаточно информативны.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >