Синтетическая теория биологической эволюции

Однако эти поправки, связанные прежде всего с открытиями в области генетики, оказались настолько существенными, что их совокупность составила содержание особого, нового этапа в развитии теории биологической эволюции — этапа синтетической биологической эволюции. Новое в ее содержании состоит главным образом в том, что она под биологической эволюцией стала понимать не только и не столько результат действия естественного отбора, сколько следствие стихийных, ненаправленных мутаций генных структур, которые и создают первооснову, первичное сырье для естественного отбора.

Следует отметить, что некоторые слабости, противоречия в теории Дарвина были замечены уже его современниками. Так, в истории биологии известно возражение инженера Ф. Дженкина (1833—1885), которое Дарвин, будучи не в состоянии на него убедительно ответить, назвал «кошмаром Дженкина». Это возражение состояло в том, что новые изменения, приобретенные организмом в результате естественного отбора, все равно должны утрачиваться в результате их «растворения» при скрещивании изменившихся особей с другими, которые не имеют таких изменений. Возникший спор мог быть разрешен только на основе знаний о роли в процессах изменчивости генных структур, которые тогда еще были неизвестны. Теперь мы знаем, что вновь приобретенное изменение, если оно фиксируется геном, приобретает благодаря этому особую прочность, устойчивость и может закрепиться в последующих поколениях вопреки воздействиям при скрещивании других генов.

Еще одно возражение состояло в том, что дарвинизм не может объяснить причины появления у многих организмов структур, кажущихся не только бесполезными, но и вредными для их выживания. В свете генетического подхода появление таких признаков сегодня объясняется тем, что в силу случайного характера генных мутаций среди них могут появиться и такие, которые приводят к закреплению не только полезных, но и бесполезных признаков.

Совокупность подобных возражений так или иначе привела ученых к признанию того факта, что реальная физическая борьба между животными или конкуренция за пространство, солнечный свет или воду между растениями имеют меньшее значение, чем это представлялось Дарвину.

Но наиболее важным моментом в формировании теории синтетической эволюции было обоснование в 1886 г. немецким биологом Августом Вейсманом (1834—1914) положения о непрерывности зародышевой плазмы. Его заслуга состоит в том, что в то время, когда еще не были известны гены, он понял, что наследственность связана с передачей от одного поколения к другому специфических молекулярных комплексов. Именно из этого положения вытекала существенно дополняющая дарвинизм мысль о том, что приобретенные признаки не наследуются до тех пор, пока не закрепятся в зародышевых клетках, в их молекулярных структурах.

Это обобщение, касающееся механизма наследования, послужило новым импульсом для формирования теории синтетической эволюции еще и потому, что оно открыло дорогу для широкого использования в биологии математических методов, создало предпосылки для превращения се в точную науку.

Первые шаги, сделанные в становлении современной биологической парадигмы, были закреплены в дальнейшем, и прежде всего на основе современных достижений генетики. Сущность эволюционного учения определяется сегодня как теория синтетической эволюции путем естественного отбора признаков, детерминированных генетически.

Крупнейшим достижением на пути утверждения современной биологической парадигмы стала расшифровка в 1953 г. американским генетиком Ф. Криком и английским биологом Дж. Уотсоном структуры ДНК, через которую осуществляется механизм наследственности. Это открытие оценивается как крупнейшее достижение биологии XX в. Расшифровка структуры ДНК стала революцией в биологии, ибо она открыла возможность выработки более глубоких представлений о сущности жизни и се эволюции.

Именно на основе этого открытия началась работа по расшифровке геномов сначала простейших организмов, а затем и все более сложных, которая привела в 2001 г. к расшифровке генома человека. Правда, понадобится еще немало времени, чтобы понять законы функционирования генных структур, особенности механизмов транспортировки и реализации содержащейся в них информации.

Развитие исследований в этом направлении позволило представить процесс эволюции как соревнование генетических программ, которое и определяет индивидуальное развитие организмов. Причем важнейшую роль в определении общего направления эволюции играет главное программирующее устройство, в качестве которого выступает биосфера в целом. Именно биосфера определяет скорость и направление эволюционного преобразования видов, входящих в ее состав.

Становление теории синтетической эволюции, представляющей по своему содержанию синтез дарвинизма и достижений молекулярной биологии, побудило некоторых исследователей пойти еще дальше: выступить против дарвиновской теории эволюции, как обнаружившей якобы свою полную несостоятельность.

Одну из первых попыток такого рода предпринял в начале прошлого века отечественный биофизик академик Л. С. Берг (1876—1950). По его представлениям, вся эволюция биосферы есть развертывание какого-то еще не совсем ясного для нас закона, многовариантной программы, в которой содержатся и многовариантные способы ее реализации. Поэтому Берг назвал свою концепцию номогенезом, противопоставив ее дарвиновской концепции тихогенеза (от греч. tyche — случайность), т.е. развития, основанного на случайности. Согласно теории номогенеза, развитие протекает по определенным внутренним законам, которые не могут быть сведены, как это представлял себе Дарвин, к воздействию внешней среды. Берг суммировал в своих работах большой фактический материал, который свидетельствовал о наличии в мире живого многочисленных «ритмов и рифм», которые нельзя назвать случайными. Однако ясного представления о сути этого закона Берг так и не дал, как не могут его сформулировать его последователи до сих пор, что, впрочем, может свидетельствовать о недостаточности наших знаний о сущности эволюции.

Попытки опровергнуть дарвинизм продолжаются до сих пор. Так, один из современных естествоиспытателей, сам квалифицирующий свою позицию как «вполне антидар- винистскую», заявляет, что решающим фактором биологической эволюции является вовсе не естественный отбор, а «самосборки» генов, их мутации, возникающие «сами собой», только под влиянием фундаментальных физических взаимодействий. За естественным отбором, по мнению автора, остается лишь стабилизирующая роль фильтра, сохраняющего в живых наиболее адаптированные «самосборки»: «вопреки тому, что говорят дарвинисты, эта роль в эволюционном плане видится вполне пассивной»1.

Но ведущую партию в хоре антидарвинистов по-прежнему исполняют представители концепции креационизма, принадлежащие большей частью к сословию священнослужителей. Один из них, например, заявляет, что «наблюдаемые факты лучше истолковываются в рамках теории сотворения, чем теории эволюции»[1] [2]. А другой упрекает эволюционную теорию в том, что она «...поставила во главу угла не Творца, но тварь»[3].

Правда, некоторые из религиозно настроенных мыслителей все более настойчиво призывают сегодня и теологов, и ученых отказаться от конфронтации науки и религии, в том числе и при объяснении происхождения и сущности жизни. В частности, один из выдающихся мыслителей современности, французский ученый-антрополог, философ и теолог Пьер Тейяр де Шарден (1881 — 1955) подчеркивает: «Религия и наука — две неразрывно связанные стороны, или фазы, одного и того же полного акта познания, который только один смог бы охватить прошлое и будущее эволюции»1.

Можно сказать, что взаимодействие пауки и религии, которое недавно казалось вообще невозможным, теперь становится возможным, в частности при решении возникающих в условиях стремительного развития современной биологии ряда острых этических проблем.

  • [1] Хайтун С. Д. Фундаментальная сущность эволюции // Вопросыфилософии. 2001. № 2. С. 161.
  • [2] 1 Хобринк Б. Эволюция. Яйцо без курицы. М.: Мартис, 1993. С. И.
  • [3] Северцов А. В. Теория эволюции: наука или идеология? Труды XXVЛюбищевских чтений. Вып. 7. М. — Абакан : МОИП — Центр системныхисследований, 1998. С. 74.
 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >