Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow ГЕОМЕТРИЯ: ПЛАНИМЕТРИЧЕСКИЕ ЗАДАЧИ НА ПОСТРОЕНИЕ
Посмотреть оригинал

Критерий разрешимости задач на построение с помощью циркуля и линейки.

Для того чтобы циркулем и линейкой можно было построить отрезок, длина которого является заданной положительной функцией длин данных отрезков, необходимо и достаточно, чтобы длину искомого отрезка можно было бы выразить через длины отрезков при помощи конечного числа основных операций.

Так, например, с помощью циркуля и линейки можно построить

отрезки, длины которых заданы такими формулами: ? Jab + cd

a + b

и т.д. Но с помощью циркуля и линейки нельзя построить отрезки, длины которых заданы, например, следующими формулами: sja + b; 1а?№; к + ЗаЬ (эта последняя задача неразрешима, так как я не является числом алгебраическим, оно число трансцендентное: число транс- цендентно, если оно не является корнем ни одного алгебраического уравнения с целыми коэффициентами).

Классическими задачами, не разрешимыми циркулем и линейкой, являются следующие три.

  • 1. Дан круг. Построить с помощью циркуля и линейки квадрат, равновеликий этому кругу.
  • 2. Задан куб (длиной своего ребра). Построить с помощью циркуля и линейки другой куб (т.е. его ребро), объем которого вдвое больше объема данного куба.
  • 3. Дан угол. Разделить с помощью циркуля и линейки этот угол на три равные части (или иначе: построить угол, в три раза меньший данного).

Если задача касается построения с помощью циркуля и линейки точки, то критерий разрешимости будет формулироваться так. Задача на построение точки с помощью циркуля и линейки разрешима тогда и только тогда, когда координаты искомой точки могут быть записаны в виде выражений, содержащих конечное число основных операций (сложение, вычитание, умножение, деление, извлечение квадратного корня), примененных к координатам заданных точек.

В результате изучения данного пособия учащиеся должны освоить:

знать

  • • основные построения, которые допускают циркуль и линейка;
  • • критерии разрешимости задач на построение с помощью циркуля и линейки;
  • • классические задачи, не разрешимые циркулем и линейкой;
  • • основные этапы решения задач на построение;
  • • основные операции и методы, используемые для решения задач на построение с помощью циркуля и линейки;
  • • теоретические основы методов решения задач на построение;

уметь

  • • решать задачи на построение различными методами;
  • • проводить анализ задачи на построение с целью поиска плана ее решения;
  • • проводить само построение при решении задач на построение;
  • • проводить доказательство правильности проведенного построения;
  • • проводить исследование решения задач на построение;
  • • оценивать наиболее рациональные способы и методы решения задач на построение;

владеть

  • • навыками решения задач с помощью циркуля и линейки или с помощью другого набора инструментальных средств: одним циркулем, линейкой с двумя параллельными краями, линейкой и окружностью, заданной в плоскости чертежа с отмеченным центром;
  • • навыками решения задач на построение следующими методами: методом геометрических мест точек; методом осевой симметрии; методом спрямления; методом вращения; методом центральной симметрии; методом подобия; методом гомотетии; методом параллельного переноса; методом обратности; алгебраическим методом;
  • • приемами диагностики уровня сформированности умения решать задачи на построение.
 
Посмотреть оригинал
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Популярные страницы