Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow УДИВИТЕЛЬНАЯ ФИЗИКА
Посмотреть оригинал

Как мы смотрим на мир?

Разговаривая о свете, мы просто обязаны знать, как видят глаза. Иначе мы, чего доброго, будем, как древние, думать, что из глаз исходят тонкие щупальца, ощупывающие все вокруг.

Примитивный глаз, так называемый сложный, или фасеточный, характерен для насекомых и ракообразных. Состоит такой глаз из множества отдельных «глазков» - фасеток, покрывающих выпуклый сложный глаз насекомого. Такие глаза хорошо видят широко вокруг, особенно движение, но нечетко. По сравнению с головой насекомого, например, мухи, глаза эти очень велики, они занимают большую часть «лица» мухи.

Простейшие животные, не имеющие специального органа зрения, если и «видят» свет, то просто ощущают его кожей. Также кожей ощущают свет и слепые. Скорее всего, они чувствуют тепло, приносимое светом.

Когда говорят об эволюции видов и учении Дарвина, вопрос о глазе животных встает в первую очередь. Как фасеточный глаз мог путем эволюции превратиться в принципиально новый «прибор» - глаз высокоразвитых животных и человека? Рассмотрение устройства и принципа работы такого глаза показывает, что этого быть не могло.

А

, Преломление света в призме

Рис, 121, Преломление света в призме

Чтобы понять работу глаза, рассмотрим сперва, как свет проходит через стеклянную, да и вообще прозрачную призму (рис. 121). Допустим, какой-нибудь одноцветный пучок света DE падает на грань призмы АВ. При переходе из одной прозрачной среды (воздуха) в другую (стекло) луч преломляется, и угол 5, на который он отклонился, зависит от так называемого коэффициента преломления, в данном случае стекла.

В стекле луч идет по направлению

EF, а по выходу из него снова преломляется и идет по направлению FG. Если мы возьмем равнобедренную призму (рис. 122, а) и пошлем лучи света перпендикулярно грани АВ, то они по законам преломления света полностью отразятся от грани АС и выйдут наружу совсем так, как если бы вместо грани АС было зеркало. Если же мы поставим призму так, как изображено на рис. 122 б, то лучи света, отразившись от грани АС, поменяются местами - нижний луч 3 уже станет верхним, а верхний 1 - нижним. Эта последняя призма называется оборотной.

Поворотная (о) и оборотная (б) призмы

Рис. 122. Поворотная (о) и оборотная (б) призмы

Преломляя лучи, линзы действуют как совокупности призм

Рис. 123. Преломляя лучи, линзы действуют как совокупности призм: а - выпуклые линзы; б - вогнутые линзы

Так можно перевернуть изображение «вверх ногами». Запомните это свойство оборотной призмы, оно нам еще пригодится. А теперь, узнав о свойствах призм, перейдем к линзам (это слово в переводе с немецкого означает «чечевица», которая очень похожа на выпуклую линзу). Они бывают выпуклыми, или собирающими (рис. 123, а), и вогнутыми, или рассеивающими (рис. 123, б). Рассматривая ход лучей в линзах, как бы состоящих из совокупности призм, получаем, что в собирающей линзе параллельные лучи «соберутся» в фокусе F, а в рассеивающей - «рассеются» так, как будто этот фокус F расположен по другую сторону линзы (мнимый фокус). Обратная величина фокусному расстоянию (от фокуса до центра линзы) называется оптической силой и выражается в диоптриях. Если фокусное расстояние наших очковых линз, например, 0,1 м, то их сила равна 1/0,1 = 10 диоптрий.

Ход лучей в линзе

Рис. 124. Ход лучей в линзе

Если какой-нибудь предметов (рис. 124) находится достаточно далеко от линзы, то, построив ход лучей от точек А к В, мы получим по другую сторону линзы перевернутое его изображение А^ВГ При этом размеры изображения АГВ/ во столько раз больше (или меньше) размеров предмета АВ, во сколько расстояние от линзы изображения больше (или меньше) расстояния от нее предмета. Иными словами, размеры пропорциональны расстояниям от линзы. На рисунке изображение А1В1 ближе к линзе, чем предмет АВ, потому оно и пропорционально уменьшено по сравнению с последним.

А теперь перейдем к человеческому глазу (рис. 125). Внешняя оболочка глазного яблока - склеротика S, передняя прозрачная часть которой С носит название роговой оболочки. Внутренняя сторона склеротики покрыта сосудистой оболочкой, состоящей из кровеносных сосудов. В передней части сосудистая оболочка переходит в радужную оболочку I, посередине которой находится круглое отверстие - зрачок р.

Устройство глаза человека

Рис. 125. Устройство глаза человека

Внутри глаза на сосудистой оболочке находится сетчатая оболочка г, представляющая собой разветвление зрительного нерва с нервными окончаниями в виде палочек и колбочек.

Во внутренней полости глаза, сзади радужной оболочки, находится прозрачное хрящевидное тело L - хрусталик. Хрусталик с помощью особых мускулов может изменять свою кривизну. Против хрусталика на сетчатке находится желтое пятно g, обладающее наибольшей чувствительностью к свету.

При помощи мышц глаз устанавливается так, что изображение предмета попадает на желтое пятно. Пространство между роговой оболочкой и хрусталиком наполнено бесцветной жидкостью - водянистой влагой. Остальную часть глаза между хрусталиком и сетчаткой заполняет студнеобразное стекловидное тело. Показатель преломления этих двух сред примерно 1,33, показатель преломления хрусталика около 1,5. Преломляющая система таза в целом может быть рассматриваема как двояковыпуклая линза со средним фокусным расстоянием 1,7 см, или оптической силой около 60 диоптрий. Эго сильнейшее «увеличительное стекло». Очки в 10 диоптрий мы считаем сильными, а тут 60!

Здесь не мешало бы спросить себя, а не вверх ли ногами расположен весь окружающий мир, если мы его видим правильно? Ведь изображение на сетчатке-то перевернутое! Вот интересный опыт, который, если захотите, можете провести и вы.

Ученые изготовили очки, в которые вместо стекол вставили по две оборотные призмы (их можно вынуть из полевого бинокля).

И человек, надевший эти очки, стал все видеть «вверх ногами». Сначала ему было страшно ходить, потом он привык, а к концу недели ему стало казаться, что он видит все правильно. Еще какое-то время человек продолжал носить эти очки, чтобы совсем привыкнуть. И когда он снял очки-перевертыши, то весь мир стал ему казаться перевернутым «вверх ногами». Новорожденный тоже видит мир таким, а потом на опыте убеждается, что действительно все наоборот, и привыкает. Очки-перевертыши позволяют нам видеть мир таким, каким его видит младенец.

Когда зрение нормальное, т. е. глаз имеет примерно 60 диоптрий, то лучше всего человек видит на расстоянии 0,25 м. Но существуют глаза с оптической силой и больше, и меньше этой величины, что соответственно означает близорукие или дальнозоркие глаза.

Лучи света, идущие от какого-нибудь отдаленного предмета, в близоруком глазу сходятся не на сетчатке, а ближе нее в точке D (рис. 126, а поэтому близорукие люди смутно видят отдаленные предметы. Близорукость может быть исправлена ношением вогнутых очков.

Оптическая сила дальнозоркого глаза меньше нормального, вследствие чего лучи, идущие от сравнительно близких предметов, сходятся за сетчаткой в точке В (рис. 126, б). Исправить этот недостаток можно ношением выпуклых очков.

Первые упоминания об очках относятся к 1280 г., когда итальянский физик Сальвино делла Армати изготовил первые очки из двух линз. Некоторые считают, что первые очки в Европе изобрел в XIII в. Роджер Бэкон, английский монах и философ.

Но люди знали о линзах, исправляющих зрение, еще в античном мире. Тогда уже прекрасно полировали драгоценные камни и не могли не заметить свойств прозрачных камней с выпуклой или вогнутой

Ход лучей в близоруком

Рис. 126. Ход лучей в близоруком (а) и в дальнозорком (б) глазу (сплошные линии - без очков; штриховые - в очках) поверхностью. Известно, что сумасбродный римский император Нерон был близорук и для улучшения зрения приставлял к глазу полированный изумруд, по-видимому, выполненный в виде рассеивающей линзы. А в гробнице фараона Тутанхамона найдены очки с темно-коричневыми стеклами в бронзовой оправе, по-видимому, солнцезащитные. Им 3 300 лет.

А зачем человеку два таза? Может быть, хватило бы и одного? Кутузов, Нельсон, Потемкин и многие другие славные люди лишились одного таза, но тем не менее видели вроде бы нормально. Да, острота зрения у них мота быть и высокой, но они видели мир... плоским.

Когда предмет рассматривается обоими глазами, то на сетчатке каждого из них получается изображение этого предмета. Тем не менее когда изображения попадают на соответствующие места сетчатки, то мы не видим предметов двойными. В этом случае два впечатления сливаются в одно.

Рассматривая предмет обоими тазами, мы ощущаем три измерения: ширину, высоту и глубину, и ясно отличаем более близкие предметы от удаленных. При зрении одним тазом восприятие трехмерного пространства значительно ослабляется. Зрение двумя тазами позволяет нам также судить о величине предмета и его удаленности от таза

Рассматривая предмет двумя глазами, мы сводим линии зрения то на более близкие, то на более удаленные точки предмета. При этом глазные мышцы испытывают различные напряжения. По степени этих мышечных напряжений мы на основании жизненного опыта и судим об удаленности от нас предмета.

И мир приобретает свой объем, он воспринимается нами в так называемом стереоскопическом изображении.

С одним глазом - лучше!

Прозрачный кубик с пятнами - как его видит левый (в) и правый (б) глаз

Рис. 127. Прозрачный кубик с пятнами - как его видит левый (в) и правый (б) глаз

Итак, обычный человек смотрит двумя глазами, у него, как говорят, бинокулярное зрение. Между тем одним тазом человек видит лучше, острее. Даже монах и философ XIII в. Р. Бэкон писал: «Мы видим одним глазом лучше, чем двумя, потому, что жизненные духи сосредотачиваются при этом в одном месте». В то же время не зря у нас, да и не только у нас, а почти у всех животных (кроме камбал «в возрасте», у которых «нижний» глаз не функционирует) по два таза.

Мы знаем, что это для «обьемного», стереоскопического зрения. А всегда ли два таза лучше, чем один? Оказывается, не всегда.

В первую очередь это касается рассматривания фотографий. Ведь фотографии делались с помощью одного, причем «стеклянного» таза- фотоаппарата. Значит, и рассматривать их надо тоже одним тазом; тогда мы получим реальное зрительное впечатление. Если же смотреть двумя глазами, то мы как бы обманываем свой мозг. Он-то «знает», что при бинокулярном зрении изображения в правом и левом глазу разные и эта «разность» дает объем изображению. А тут - в обоих глазах одна и та же картина. Значит, она в действительности плоская, решает мозг.

Но, даже рассматривая фотографию одним глазом, мы должны держать ее на соответствующем расстоянии от глаза. Рассматривать ее надо под тем же углом зрения, под каким фотоаппарат сам «видел» ее. Это касается фотографий, полученных непосредственно без увеличения, например камерами «Полароид». Тогда мы должны держать фотографию перед глазом на расстоянии, равном фокусному расстоянию фотокамеры. А это очень мало - несколько сантиметров. Только очень близорукие люди и маленькие дети могут рассмотреть фотографию со столь близкого расстояния. Они-то и увидят настоящую, «живую», рельефную картину! Что же делать людям с нормальным зрением? Да просто взять лупу и рассмотреть фотографию с увеличением во столько раз, во сколько раз расстояние ее от глаза больше фокусного расстояния камеры. Это легко получается передвиганием лупы между фотографией и глазом: на каком-то расстоянии фотография «заиграет», вы увидите ее объемной. Обязательно сделайте этот опыт, и вы поймете, как надо правильно рассматривать фотографии!

Такого же эффекта мы добиваемся, когда рассматриваем слайды через лупу на просвет. Вы заметили, наверное, сколь велика разница между слайдом, рассматриваемым простым глазом и через специальный аппарат с лупой.

Можно ли добиться такого же эффекта без лупы, глядя на фотографию (конечно же, одним глазом!) с приемлемого расстояния,

Рассматривать фотографию надо под тем же углом зрения, под каким «видит» ее фотоаппарат

Рис. 128. Рассматривать фотографию надо под тем же углом зрения, под каким «видит» ее фотоаппарат (а = Р) например, на выставке? Оказывается, можно. Для этого нужно, чтобы фокусное расстояние камеры было 25-30 см, т. е. оно было бы равно нормальному расстоянию рассматривания. Поэтому в фотоателье до сих пор используют для художественных фотографий такие длиннофокусные фотокамеры. Они крупны, неудобны, но дают «живые» фотографии.

Понта тот же эффект дает увеличение негативов в фотоувеличителе. Например, если фокусное расстояние камеры около 4 см, то, чтобы рассматривать фотографию с нормального расстояния, нужно увеличить ее примерно в 8 раз, что, впрочем, обычно и делается. Большие фотографии с увеличением в 20 и более раз нужно и рассматривать с большего расстояния, что и делается на выставках. Кстати, с большого расстояния фотографии можно рассматривать уже двумя глазами. Особенность зрения такова, что с увеличением расстояния две одинаковые картины в правом и левом глазу уже не дают плоского изображения.

А как же быть, когда увеличение уж очень велико? Например, в кинотеатре. Автора с детства поражало то, что в театрах зрители стремились занять передние ряды, а в кино - задние. Да и цены были соответствующие - в театрах дороже всегда передние ряды, а в кино - эти ряды были самыми дешевыми. Автор же все равно пытался сесть в кино в первый ряд, если даже билет был на ряд подальше. С первого ряда изображения на экране казались живыми, как будто в стереокино. Здесь срабатывал «эффект лупы» при рассматривании фотографий.

А на каком расстоянии от экрана надо садиться, чтобы видеть изображение нормально, как в жизни? Для определения этого расстояния надо бы знать фокусное расстояние камеры, которой снимали фильм. Тогда при ширине пленки в 24 мм мы должны сесть на расстоянии от экрана во столько раз большем, чем ширина изображения на экране, во сколько раз фокусное расстояние больше 24 мм. Обычно оно бывает от 1,5 до 4 раз больше ширины пленки. Значит, надо ширину изображения на экране увеличить от 1,5 до 4 раз. Если эта ширина, например, 5 м, то сесть лучше на расстоянии 7,5-20 м от экрана.

Ну а как же быть с фотографиями в иллюстрированных журналах? Ведь мы рассматриваем их, не зная ни фокусного расстояния камеры, которой эта фотография снималась, ни последующих увеличений при получении полиграфического изображения. Расстояние это лучше всего определять так. Один глаз нужно закрыть и, держа иллюстрацию на вытянутой руке, смотреть прямо в середину фотографии. Потом медленно приближать ее к глазу, улавливая момент, когда иллюстрация приобретет максимальную рельефность. На таком оптимальном расстоянии рассматривания вы уловите даже чисто стереоскопические эффекты, например прозрачность, блеск мокрой кожи, перспективу изображения и т. д. Если это не поможет, придется прибегать к помощи лупы - значит, изображение в журнале сделано непрофессионально.

А как же правильно рассматривать картины? Ведь здесь нет никакого фокусного расстояния или увеличения.

Совет тот же, что и с фотографиями: смотреть одним глазом, лучше через специальную трубочку или даже кулак с небольшой щелкой в нем (так часто делают сами художники). На рис. 129 приведена фотография автора, когда его засняли именно в момент рассматривания картины через щелку в кулаке. Многим была непонятна эта нелепая поза с кулаком у глаза, но вы уже знаете, что картины лучше всего рассматривать именно так!

Да и расстояние от картины должно быть таким, с какого предположительно художник и рисовал свою натуру. Или предполагал его, если рисовал по памяти. Интересно, что нередко уменьшенные фотографии с картин дают при рассматривании большую рельефность, чем сама картина. Теперь нам понятно, почему это происходит. Мы пытаемся рассматривать изображение с расстояния 25- 30 см, а художник, возможно, рисовал натуру с расстояния в 10 раз большего. Так вот, если в эго же число раз уменьшить изображение картины, то можно и рассматривать ее с удобного расстояния.

Теперь вы видите, как непросто не только написать картину или сделать хорошую фотографию, но и правильно рассмотреть их!

 
Посмотреть оригинал
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Популярные страницы