Меню
Главная
Авторизация/Регистрация
 
Главная arrow Техника arrow БИОТЕХНОЛОГИЯ
Посмотреть оригинал

Генетическая инженерия растений

Трансформация растительного генома

Важным преимуществом растений, по сравнению с животными, является способность их клеток развиваться в целое растение (т. е. тотипотентность), что широко используется в работах по получению трансгенных растений.

Генетическая трансформация растений с помощью методов генетической инженерии может быть осуществлена векторным способом (с использованием агробактерий и вирусов) и путем прямого переноса генов.

Наиболее изученным примером работы плазмидных векторов служит введение чужеродных генов в геном растений с помощью Ti- и Ri-плазмид почвенных бактерий рода Agrobacterium. С помощью этих плазмид бактерии могут интегрировать свой генетический материал в клетки двудольных растений.

Ti-плазмида (от англ, tumor inducing — индуцирующая опухоль) обнаружена в клетках некоторых штаммов Agrobacterium tumefaciens. Выделенная в чистой культуре, эта бактерия может приводить к образованию опухолей у двудольных растений, что, по существу, может рассматриваться как природная генно-инженерная система.

Ri-плазмида (от англ, root inducing — индуцирующая корни) присутствует в штаммах Agrobacterium rhizogenes.

В 1970-х гг. Дж. Шелл с сотрудниками выявил, что причиной опухолеобразования являются Ti-плазмиды, обнаруженные в клетках некоторых штаммов A. tumefaciens. Ti-плазмида проникает из клетки бактерии в растение, и часть ее, называемая Т-ДНК (от англ, transferred DNA — переносимая), ковалентно встраивается в хромосомы инфицируемого растения (рис. 4.10). В природе этот фрагмент переносит гены, которые способствуют размножению агробактерий и дают им возможность паразитировать на пораженном растении.

Гены, входящие в состав Т-ДНК, функционируют лишь после их переноса в растительную клетку. Будучи интегрированной с хромосомой, Т-ДНК индуцирует в месте заражения образование опухоли (корончатых галлов, напоминающих раковые клетки животных), гиперпродукцию фитогормонов — цитокининов и ауксина, а также синтез ряда производных аминокислот, опинов — веществ, которых нет в здоровых клетках ни у одного растения.

Опухоль возникает вследствие нарушения баланса фитогормонов, т. е. как результат функционирования онкогенов, продуктами которых являются ауксины и цитокинины. Опины, выделяемые клетками опухоли, бактерия использует в качестве источников углерода и азота для своего роста и размножения. Сама бактерия в клетку не проникает, а остается в межклеточном пространстве и использует клетку со встроенной Т-ДНК как «фабрику», продуцирующую опины. Такие отношения A. tumefaciens и растения Дж. Шелл назвал генетической колонизацией, которая представляет собой эксперимент по генетической инженерии, поставленный самой природой.

растительная клетка

12 3 4

Рис. 4.10. Генетическая колонизация растения A tumefaciens (по Э.С. Пирузян, 1989):

1 — агробактерии существуют в ризосфере; 2 — строение A. tumefaciens; 3 — встраивание Т-ДНК в геном; 4 — образование опухоли

Строение Ti-плазмид хорошо изучено. Они включают в себя:

  • — Т-ДНК — область ДНК, где содержатся гены, ответственные в итоге за морфологию опухоли и синтез фитогормонов, вызывающих неконтролируемый рост опухолевых клеток, а также гены, ответственные за синтез опинов — источников углерода и азота для питания бактерий. Именно все эти гены передаются в ядерный геном растительной клетки;
  • — у/г-область — содержит гены, ответственные за вырезание, перенос и интеграцию Т-ДНК в хромосомы растений. Индукция этих генов обратима, что очень важно для бактериальных клеток. Если зараженное растение уже больно и является нежизнеспособным организмом, то переноса Т-ДНК не происходит;
  • — ori-область — содержит гены, продукты которых обеспечивают репликацию Ti-плазмиды;
  • — fra-область — содержит гены, ответственные за конъюгацию бактерий.

Ti-плазмида оказалась идеальным природным вектором для введения чужеродных генов в клетки растения. Проще всего было бы заменить Т-ДНК на чужеродные (полезные) гены, ввести их в плазмиды агробактерий и заразить ими растения, так как гены, ответственные за индукцию опухоли, синтез опинов и подавление дифференциации клеток поражаемого растения, расположены близко друг от друга в Т-ДНК. В то же время гены, ответственные за перенос и интеграцию Т-ДНК в хромосомы растений, находятся в другой области Ti-плазмиды — в uir-области.

Итак, на основе Ti-плазмиды в условиях эксперимента создают искусственные векторы. Для создания трансгенных растений гены, кодирующие хозяйственно ценные признаки, встраивают в Т-ДНК. Эту же область снабжают маркерными генами (для отбора трансформированных растительных клеток), эукариотическим промотором (например, 358-промотор вируса мозаики цветной капусты — CAMV) и уникальными сайтами рестрикции.

Однако размеры Ti-плазмид слишком велики и не позволяют использовать их в качестве вектора. Для решения этой проблемы была создана специальная технология — бинарная система.

Т-ДНК вырезают из Ti-плазмиды и встраивают, например, в плазмиду pBR322, способную к саморепликации в клетках Е. coli. Таким образом осуществляют клонирование Т-ДНК (многократное увеличение числа копий) в составе pBR322. Векторную систему (Т-ДНК — pBR322) выделяют из клеток Е. coli и встраивают в Т-ДНК интересующие гены. Новую векторную систему снова размножают в клетках Е. coli, а затем вводят в клетки Agrobacterium tumefaciens, в которых находятся нормальные Ti-плазмиды. В результате гомологичной рекомбинации векторная система и Ti-плаз- мида обмениваются участками Т-ДНК. Теперь клетки Agrobacterium tumefaciens несут в составе своих плазмид чужеродные гены, которые они могут передать в ядерный геном растительных клеток, что и приводит к созданию трансгенных растений.

В последние годы для создания искусственных векторов используют Ri-плазмиду (от англ, root inducing — индуцирующая корни), присутствующую в штаммах Agrobacterium rhizogenes. Ri-плазмиды выгодно отличаются от Ti-плазмид тем, что они являются естественными безвредными векторами. После встраивания Т-ДНК в хромосомную ДНК растительных клеток в области заражения наблюдается усиленное образование корешков (<• бородатость»), из которых легче регенерировать здоровые растения, чем из недифференцированной ткани опухоли.

Для трансформации устойчивых к агробактериям однодольных растений разработаны приемы прямого физического переноса ДНК в клетку. Эти методы достаточно разнообразны: бомбардировка микрочастицами, или баллистический метод; электропорация; обработка полиэтиленгликолем; микроинъекция; перенос ДНК в составе липосом и др.

Наиболее продуктивным и чаще всего используемым является метод бомбардировки микрочастицами.

В последнее время разработан и успешно применен также комбинированный метод трансформации, названный агролис- тическим. При этом чужеродную ДНК вводят в ткани каким-либо физическим методом, например баллистическим. Вводимая ДНК содержит как Т-ДНК вектор с целевым и маркерным геном, так и агробактериальные гены вирулентности под контролем эукариотического промотора. Временная экспрессия генов вирулентности в растительной клетке приводит к синтезу белков, которые правильно вырезают Т-ДНК из плазмиды и встраивают ее в хозяйский геном, как и при обычной агробактериальной трансформации.

После проведения тем или иным способом трансформации растительной ткани ее помещают in vitro на специальную питательную среду с фитогормонами, способствующую размножению клеток. Среда обычно содержит селективный агент, в отношении которого трансгенные клетки приобретают устойчивость. Регенерация чаще всего проходит через стадию каллуса, после чего при правильном подборе сред начинается органогенез (побегообразование). Сформированные побеги переносят на среду укоренения, часто также содержащую селективный агент для более строгого отбора трансгенных особей.

 
Посмотреть оригинал
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Популярные страницы