Гормоны коры надпочечников

В коре надпочечников синтезируются стероидные гормоны. Это соединения липидной природы, производные циклопентанопергидрофенантрена. Стероидные гормоны синтезируются, кроме надпочечников, в половых железах, однако независимо от места синтеза их общим предшественником является холестерин. Кортикостероиды коры надпочечников разделяют на две группы: глюкокортикоиды и минералокортикоиды. Глюкокортикоиды контролируют многие стороны обмена углеводов, липидов и нуклеиновых кислот. Наибольшей активностью обладают такие представители этой группы, как кортизол и кортикостерон.

Минералокортикоиды оказывают существенное влияние на водно-солевой обмен, причем наиболее активным из них является альлостерон. Гормонам каждой группы свойственна (в меньшей степени) биологическая активность гормонов другой группы (табл. 13.1).

Таблица I3.1. Биологическая активность кортикостероидов (Bagavan N. V., 1978)

Кортикостероиды

Г люкокортикоидная активность

Минералокортикоидная

активность

Кортизол

1

3.3 • 10 4

Кортизон

0,8

2,7- 10 4

Алиностсрон

0,4

1

Биосинтез. Образование кортикостероидов осуществляется в несколько стадий, причем общим предшественником их является холестерин (гл. 23). Холестерин синтезируется в надпочечниках или же поступает в них из кровяного русла. В цитоплазме клеток происходит этерификация холестерина и его депонирование. Сигнал на синтез кортикостероидов формируется в гипоталамусе и реализуется в синтезе кортиколиберина. Этот гормон, воздействуя на гипофиз, стимулирует образование адренокортикотропного гормона (АКТГ). Последний, взаимодействуя с мембранными рецепторами клеток надпочечников, через систему вторичных посредников активирует эстеразу холестсрола; при этом освободившийся холестерол транспортируется в митохондрии. Превращение холестерола в прегненолон в митохондриях происходит в результате гидроксилирования и отщепления боковой цепи посредством ферментов десмолазного комплекса, включающего в себя 20- и 22-гидроксилазы, а также С20_22иазу. В реакциях гидроксилирования принимают участие цитохром Р-450 и НАДФН. В результате образуется С21-стероид, который носит название прегненолон:

Идентифицировано несколько путей дальнейшего превращения прегне- нолона в биологически активные гормоны — кортикостероиды. Один из них связан с превращением прегненолона:

В ином варианте из прогестерона образуется кортизол по схеме:

Синтез минералокортикоидов контролируется ренин-ангиотензиновои системой, основным компонентом которой является ангиотензин-П-октапептид. образующийся из пол и пептидного предшественника.

Возможен путь образования из прегненолона оксикортикостерона, а затем минералокортикоида — альдостерона:

Регуляция биосинтеза. Образование кортикостероидов имеет многоуровневый характер. Прежде всего следует отметить регуляцию, связанную с сигналами, поступающими из гипоталамуса и гипофиза. Далее существенное влияние на этот процесс оказывает содержание холестерола и его транспорт в митохондрии. И наконец, регуляция образования кортикостероидов определяется активностью ферментов гидроксилирования холестерина. Образование прегненолона является лимитирующей стадией всего процесса стероидогене- за. Был обнаружен специальный белок, способствующий взаимодействию холестерина с цитохромом Р-450 и, таким образом, оказывающий существенное влияние на стероидогенез.

Метаболизм. Биотрансформация глюкокортикоидов происходит в печени и заключается в серии реакций окисления и восстановления (причем последние превалируют). Одной из основных реакций инактивации этих гормонов является образование восстановленных дигидро- и тетрагидропроизводных в результате восстановления двойных связей в кольце А в присутствии НАДФН. Биотрансформация включает также конъюгацию с глюкуроновой кислотой и в меньшей степени с сульфатами. Образовавшиеся конъюгаты с желчью поступают в кишечник, где возможна их реадсорбция, попадание в кровяное русло и выведение с мочой.

Минералокортикоиды. Эти гормоны в печени превращаются в тетрагидропроизводные. Например, альдостерон восстанавливается до тетрагидроаль- достсрона, который затем образует конъюгаты с глюкуроновой кислотой и выводится из организма с мочой.

Биохимические функции. Глюкокортикоиды стимулируют катаболиче- ские процессы в организме, преимущественно в мышечной и жировой тканях. Новосинтезированные гормоны быстро секретируются в кровь и связываются со специфическим белком — транскортином. Образованный макромолеку- лярный комплекс переносится к клеткам-мишеням, где происходит его диссоциация и реализация действия гормонов. Глюкокортикоиды усиливают распад белков, повышают содержание аминокислот в крови и аминного азота в моче. Данные гормоны ингибируют синтез нуклеиновых кислот во всех тканях, кроме печени. Их действие на углеводный обмен проявляется прежде всего в увеличении глюкозы в крови за счет активации глюконеогенеза в печени. В липидном обмене глюкокортикоиды стимулируют интенсификацию липолиза, а также ингибируют синтез жирных кислот в печени.

Минералокортикоиды, воздействуя на почки, регулируют водно-солевой обмен в организме. Самым активным в этой группе гормонов является альдостерон, обеспечивающий транспорт Na~ в почечных канальцах. Кроме того, он стимулирует выделение с мочой К+ и иона аммония. Механизм действия альдостерона связан с увеличением числа натриевых каналов в мембранах почечных клеток, а также с индукцией синтеза АТФ, необходимого для транспорта ионов.

Практическое применение. Кортикостероиды проявляют антивоспали- тельную, антиаллергическую и иммунодепрессивную активность. Эти фармакологические эффекты обусловливают их применение в качестве лекарственных препаратов. Их применяют для лечения ревматизма, ревматоидных артритов, бронхиальной астмы, лейкозов, аллергических реакций и ряда других заболеваний. Кроме того, кортикостероиды используют в заместительной терапии, например при болезни Аддисона, а также для подавления иммунитета при пересадке органов. Лекарственные формы — ампулы для инъекций, таблетки, мази.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >