МЕХАНИЗМЫ ВЗАИМОДЕЙСТВИЯ ГОРМОНА С КЛЕТКАМИ

Гормоны способны оказывать ряд физиологических действий.

Метаболическое, связанное с изменением обмена веществ. Большинство гормонов участвуют в регуляции обмена веществ путем изменения активности ферментативных систем в тканях. Для некоторых гормонов воздействие на обменные процессы является основной функцией. Например, инсулин, глюка- гон и адреналин непосредственно регулируют углеводный обмен; глюкокортикоиды стимулируют образование углеводов из продуктов распада белков, минералкортикоиды влияют на содержание натрия и калия в организме, а гормон околощитовидной железы регулирует обмен кальция и фосфора. Соматотропный гормон гипофиза стимулирует синтез белка и расходование углеводов и жиров. Влияние на уровень энергетических процессов гормонов щитовидной железы реализуется за счет усиления расщепления белков, углеводов и жиров. Влияние половых гормонов проявляется в усилении синтеза белков (особенно мышечных) и интенсивном расходовании жира и изменении минерального обмена.

Морфогенетическое, связанное с изменением дифференциации клеток и тканей, ростом и метаморфозом. Хорошо известно действие гормонов щитовидной железы на метаморфоз головастиков; нарушение ее функций приводит к ощутимым нарушениям роста и развития молодняка большинства животных. Гонадотропные гормоны гипофиза стимулируют рост, развитие и диф- ференцировку клеток половых желез. Начало продукции гормонов половыми железами обусловливает развитие половых органов и появление вторичных половых признаков.

Кинетическое, или пусковое, воздействие, вызывающее деятельность эффекторных структур. Эндокринокинетическое действие характерно для тропных гормонов гипофиза, которые необходимы для «включения» выработки гормонов щитовидной железы, половых желез и гормонов коры надпочечника. Кроме того, «пусковое» воздействие некоторых нейрогипофизарных гормонов заключается в инициации сокращений гладкой мускулатуры матки, миоэпителия молочных желез, гладкой мускулатуры сосудов.

Коррегирующее, связанное с изменением уровня интенсивности функций организма или его органов, работающих и без участия гормонального влияния. При этом происходит усиление или ослабление физиологических процессов. Так, адреналин учащает ритм и увеличивает силу сердечных сокращений, но угнетает сократительную активность мускулатуры желудочно- кишечного тракта.

Ключевой этап в реализации физиологического действия гормона на клетку-мишень — это его связывание со специфическим белком-рецептором, который служит распознающим посредником гормонального эффекта. Наличие рецептора — необходимое условие развития эндокринной функции, и, если в клетке нет рецепторов, гормон не способен воздействовать на нее.

В общем виде рецептор для любого из гормонов состоит из трех пространственно обособленных структур:

.осуществляющей избирательный прием гормонального сигнала за счет специфического и обратимого связывания гормона;

осуществляющей преобразование внешнего гормонального сигнала во внутриклеточный сигнал;

ответственной за инициацию регуляторных эффектов гормона за счет взаимодействия гормонорецепторного комплекса с различными акцепторными участками клетки (рис. 12.1).

Таким образом, рецептор — это такая химическая структура соответствующей ткани-мишени, которая имеет высокоспецифичные участки для связывания гормональных соединений, причем в результате этого связывания инициируются последующие биохимические реакции, необходимые для осуществления конечного эффекта данного гормона.

Исходя из локализации рецепторов, характера акцепторных участков и особенностей гормонзависимых эффектов, рецепцию разделяют на внутриклеточную и мембранную. Внутриклеточная рецепция характерна для стероидных и тиреоидных гормонов. Гормон свободно проникает через плазматическую мембрану внутрь клетки и взаимодействует с цитозольными, ядерными и другими рецепторами. Мембраносвязанные рецепторы связывают гормоны на поверхности клеток, и гормональные эффекты развиваются благодаря образованию внутриклеточных посредников (медиаторов) в результате взаимодействия гормонорецепторных комплексов с мембран-

Рис. 12.1. Модель функционально-структурной организации рецепторной молекулы:

а — гормоносвязываюший участок; е — эффекторный участок, зигзагообразная линия — участок сопряжения а и е А — акцептор, Г — гормон ными акцепторными структурами. Как правило, мембранным акцептором служит либо аденилатциклаза, изменяющая уровень внутриклеточного циклического аденозинмонофосфата (цАМФ), либо неэлектрогенные кальциевые каналы, изменяющие внутриклеточную концентрацию ионизированного кальция, либо специфические протеазы, способные изменить внутриклеточное содержание специфических гликопептидов.

Существует и возможность внутриклеточного действия связанного с мембраной гормона. Мембранные рецепторы обычно асимметрично встроены в плазматическую мембрану, причем связывающий гормонузнающий фрагмент их молекул жестко ориентирован к наружной поверхности и обращен к внеклеточному пространству. Взаимодействующая с акцептором часть рецепторной молекулы (или рецепторного комплекса) ориентирована в противоположном направлении и обращена к цитоплазме клетки. Эта жесткая ориентация рецепторов обеспечивает век- торность трансмембранной передачи гормональной информации внутрь клеток. Локализуясь трансмембранно, гидрофобная часть мембранных (поверхностных) рецепторов оказывается погруженной в бислойную липидную мембрану, в то время как связывающие и исполнительные участки находятся в водной фазе. Несмотря на относительную жесткость фиксации таких рецепторов в мембране, они способны перемешаться, осуществляя продольные и поперечные движения, облегчая тем самым «поиск» рецептором гормона. Возможная подвижность рецепторных молекул позволяет осуществить клетке такие процессы, как агрегирование и интернализация рецепторов, связавших гормональные молекулы. В основе этого процесса лежит специальный процесс — адсорбтивный эндоцитоз. Диффузно распределенные по клеточной поверхности рецепторы после связывания гормона приобретают способность к движениям в латеральной плоскости. Сближаясь, они объединяются (кластеризуются) в особых участках плазматической мембраны — окаймленных ямках — местах начала интернализации. По данным электронной микроскопии, окаймленные ямки представляют собой углубления в клеточной мембране со стороны цитоплазмы, выстланные слоем щетинкоподобного белка — клатрина, выполняющего функцию своеобразного каркаса (клатриновая корзинка). Загруженные кластерами гормонорецепторных комплексов окаймленные ямки постепенно углубляются, замыкаются и отрываются от мембраны, превращаясь в свободно плавающие по цитоплазматическому пространству везикулы. В ходе перемещения по цитоплазме происходит утрата клатринового покрытия, гладкие везикулы объединяются, формируя рецептосомы, которые способны сливаться с лизосомами или структурами аппарата Гольджи. Образование комплексной эндолизосомальной везикулы приводит к ферментативному разделению комплекса гормон-рецептор,

Рис.12.2. Схема рецепторопосрелован- ного энлоцитоза:

/ — окаймленная ямка; // — эндосома; /// — мульти везикулярные эндосомы; АГ— аппарат Гольджи

причем «проникший» в составе эндосомы гормон способен связываться с внутриклеточными структурами, а рецептор имеет возможность вновь встроиться в плазматическую мембрану (ре- циклировать) (рис. 12.2).

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >