Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны (независимые выборки)

Пусть генеральные совокупности XwYраспределены нормально, причем их дисперсии известны (например, из предшествующего опыта или найдены теоретически). По независимым выборкам, объемы которых соответственно равны п и т, извлеченным из этих совокупностей, найдены выборочные средние хну.

Требуется по выборочным средним при заданном уровне значимости а проверить нулевую гипотезу, состоящую в том, что генеральные средние (математические ожидания) рассматриваемых совокупностей равны между собой, т.е.

Учитывая, что выборочные средние являются несмещенными оценками генеральных средних (см. гл. 15, § 5), т.е. М (X) = М(Х) и M(y) = M(Y), нулевую гипотезу можно записать так:

Таким образом, требуется проверить, что математические ожидания выборочных средних равны между собой. Такая задача ставится потому, что, как правило, выборочные средние оказываются различными. Возникает вопрос: значимо или незначимо различаются выборочные средние?

Если окажется, что нулевая гипотеза справедлива, т.е. генеральные средние одинаковы, то различие выборочных средних незначимо и объясняется случайными причинами и, в частности, случайным отбором объектов выборки.

Например, если физические величины А и В имеют одинаковые истинные размеры, а средние арифметические оси у результатов измерений этих величин различны, то это различие незначимое.

Если нулевая гипотеза отвергнута, т.е. генеральные средние неодинаковы, то различие выборочных средних значимо и не может быть объяснено случайными причинами, а объясняется тем, что сами генеральные средние (математические ожидания) различны. Например, если среднее арифметическое х результатов измерений физической величины А значимо отличается от среднего арифметического у результатов измерений физической величины Б, то это означает, что истинные размеры (математические ожидания) этих величин различны.

В качестве критерия проверки нулевой гипотезы примем случайную величину

Эта величина случайная, потому что в различных опытах х и у принимают различные, наперед неизвестные значения.

Пояснение. По определению среднего квадратического отклонения, а(Х - F) = yjD(X -У).

Ha основании свойства 4 (см. гл. 8, § 5), D(X-Y} = D(x) + D(f).

По формуле (*) (см. гл. 8, § 9),D(X) = D(x)/n, D(Y) = D(Y)/m.

Следовательно,

Критерий Z— нормированная нормальная случайная величина. Действительно, величина Zраспределена нормально, так как является линейной комбинацией нормально распределенных величин X и У; сами эти величины распределены нормально как выборочные средние, найденные по выборкам, извлеченным из нормальных генеральных совокупностей^ — нормированная величина потому, что M(Z) = 0; при справедливости нулевой гипотезы a(Z) = 1, поскольку выборки независимы.

Критическая область строится в зависимости от вида конкурирующей гипотезы.

Первый случай. Нулевая гипотеза Я{): М(Х) = М( Y). Конкурирующая гипотеза Я,: М(Х) Ф М( У).

В этом случае строят двустороннюю критическую область, исходя из требования, чтобы вероятность попадания критерия в эту область в предположении справедливости нулевой гипотезы была равна принятому уровню значимости а.

Наибольшая мощность критерия (вероятность попадания критерия в критическую область при справедливости конкурирующей гипотезы) достигается тогда, когда «левая» и «правая» критические точки выбраны так, что вероятность попадания критерия в каждый из двух интервалов критической области равна а/2:

11оскольку Z— нормированная нормальная величина, а распределение такой величины симметрично относительно нуля, критические точки симметричны относительно нуля.

Таким образом, если обозначить правую границу двусторонней критической области через z , толевая граница равна -гкр(рис. 25).

Рис. 25

Итак, достаточно найти правую границу, чтобы найти саму дву- стороннюю критическую область Z<-z , Z>zKp и область принятия нулевой гипотезы (-z , zKp).

Покажем, как найти z — правую границу двусторонней критической области, пользуясь функцией Лапласа Ф(г). Известно, что функция Лапласа определяет вероятность попадания нормированной нормальной случайной величины, например Z, в интервал (0, z):

Так как распределение Zсимметрично относительно нуля, то вероятность попадания Zв интервал (0, °°) равна 1 /2. Следовательно, если разбить этот интервал точкой гкр на интервалы (0, гкр) и (гкр, °°), то по теореме сложения

В силу(*)и (**)получим Следовательно,

Отсюда заключаем: для того чтобы найти правую границу двусторонней критической области (гкр), достаточно найти значение аргумента функции Лапласа, которому соответствует значение функции, равное (1 - а)/2. Тогда двусторонняя критическая область определяется неравенствами

или равносильным неравенством  > гк , а область принятия нулевой гипотезы — неравенством -z < Z < z , или равносильным неравенством | Z | < гкр.

Обозначим значение критерия, вычисленное по данным наблюдений, через ZHa6ji и сформулируем правило проверки нулевой гипотезы.

Правило 1. Для того чтобы при заданном уровне значимости а проверить нулевую гипотезу #0: М(Х) - М(У) о равенстве математических ожиданий двух нормальных генеральных совокупностей с известными дисперсиями при конкурирующей гипотезе Ну М(Х) Ф M(Y), надо вычислить наблюденное значение критерия х — Tj

Z ( = . ' и по таблице функции Лапласа найти

ЩХ)/п + П{У)/т

критическую точку по равенству Ф = (1 - а)/2.

I I Z,ip

Если | Zmбл | < 2кр — нет оснований отвергнуть нулевую гипотезу.

Если | ZKl(m | > 2кр — нулевую гипотезу отвергают.

Пример 1. По двум независимым выборкам, объемы которых соответственно равны п = 60 и т = 50, извлеченным из нормальных генеральных совокупностей, найдены выборочные средние х = 1250 и у = 1275. Генеральные дисперсии известны: D(X) = 120, D{Y) = 100. При уровне значимости 0,01 проверить нулевую гипотезу Я0: М(Х) = M(Y) при конкурирующей гипотезе //,: М(Х) ф М( Г).

Решение. Найдем наблюдаемое значение критерия:

По условию, конкурирующая гипотеза имеет вид М(Х) фМ (У), поэтому критическая область — двусторонняя.

Найдем правую критическую точку:

По таблице функции Лапласа (см. приложение 2) находим гкр = 2,58.

Так как | Zm6n | > г — нулевую гипотезу отвергаем. Другими словами, выборочные средние различаются значимо.

Второй случай. Нулевая гипотеза Я(): М(Х) = М(Y). Конкурирующая гипотеза Я,: М(Х) > М( У).

Рис. 26

На практике такой случай имеет место, если профессиональные соображения позволяют предположить, что генеральная средняя одной совокупности больше генеральной средней другой. Например, если введено усовершенствование технологического процесса, то естественно допустить, что оно приведет к увеличению выпуска продукции. В этом случае строят правостороннюю критическую область, исходя из требования, чтобы вероятность попадания критерия в эту область в предположении справедливости нулевой гипотезы была равна принятому уровню значимости (рис. 26):

Покажем, как найти критическую точку с помощью функции Лапласа. Воспользуемся соотношением (***):

В силу (**) и (****) имеем

Следовательно,

Отсюда заключаем: для того чтобы найти границу правосторонней критической области (z ), достаточно найти значение аргумента функции Лапласа, которому соответствует значение функции, равное (1 - 2а)/2. Тогда правосторонняя критическая область определяется неравенством Z > zK|), а область принятия нулевой гипотезы — неравенством ZKp.

Правило 2. Для того чтобы при заданном уровне значимости а проверить нулевую гипотезу //(): М(Х) = M(Y) о равенстве математических ожиданий двух нормальных генеральных совокупностей с известными дисперсиями при конкурирующей гипотезе Н{ : М(Х) > > М(У), надо вычислить наблюдавшееся значение критерия

Z*n = , = и по таблице функции Лапласа найти

набл jD(X)/n + D(Y)/m

критическую точку из равенства Ф(гк)) = (1 - 2а)/2.

Если Z , нет оснований отвергнуть нулевую гипотезу. Если Z , >z нулевую гипотезу отвергают.

наол кр j j j I

Пример 2. По двум независимым выборкам, объемы которых соответственно равны п= 10 и т= 10, извлеченным из нормальных генеральных совокупностей, найдены выборочные средние х = 14,3 и у = 12,2. Генеральные дисперсии известны: D(X) = 22, D(Y) = 18. При уровне значимости 0,05 проверить нулевую гипотезу Н0: М(Х) = М(У) при конкурирующей гипотезе Я,: М(Х) < М(У).

Решение. Найдем наблюдаемое значение критерия:

По условию, конкурирующая гипотеза имеет вид М(Х) > М(У), поэтому критическая область — правосторонняя.

По таблице функции Лапласа находим гкр = 1,64.

Так как Zia6ji < 2кр— нет оснований отвергнуть нулевую гипотезу. Другими словами, выборочные средние различаются незначимо.

Третий случай. Нулевая гипотеза #0: М(Х) = М( У). Конкурирующая гипотеза Я,: М(Х) < М( У).

В этом случае строят левостороннюю критическую область, исходя из требования, чтобы вероятность попадания критерия в эту область в предположении справедливости нулевой гипотезы была равна принятому уровню значимости (рис. 27):

Рис. 27

Приняв во внимание, что критерий Z распределен симметрично относительно нуля, заключаем, что искомая критическая точка z' симметрична такой точке z > 0, для которой P(Z> гкр) = а, т.е. z'K = -z . Таким образом, для того чтобы найти точку z'p, достаточно сначала найти «вспомогательную точку» гкр так, как описано во в т о р о м с л у ч а е, а затем взять найденное значение со знаком минус. Тогда левосторонняя критическая область определяется неравенством Z<-zk , а область принятия нулевой гипотезы — неравенством Z > —zKp.

Правило 3. При конкурирующей гипотезе Я(: М(Х) < М(Т) надо вычислить Ziia(k и сначала по таблице функции Лапласа найти «вспомогательную точку» гкр по равенству Ф(2кр) = (1 - 2а)/2, а затем положить z'p = -zKp.

Если Zita6i > -2кр — нет оснований отвергнуть нулевую гипотезу.

Если Z , < -z — нулевую гипотезу отвергают.

Пример 3. По двум независимым выборкам, объемы которых соответственно равны п = 50 и m = 50, извлеченным из нормальных генеральных совокупностей, найдены выборочные средние х = 142 и у = 150. Генеральные дисперсии известны: D(X) = 28,2, D(Y) = 22,8. При уровне значимости 0,01 проверить нулевую гипотезу Я0: М(Х) = М(У) при конкурирующей гипотезе Я,: М(Х) < М( У).

Решение. Подставив данные задачи в формулу для вычисления наблюдаемого значения критерия, получим Z ^ = -8.

По условию, конкурирующая гипотеза имеет вид М(Х) < М( У), поэтому критическая область — левосторонняя.

Найдем «вспомогательную точку» zj.

По таблице функции Лапласа находим z = 2,33. Следовательно, Кр~ -2кр = “2,33.

Так как Zm6n <кр — нулевую гипотезу отвергаем. Другими словами, выборочная средняя х значимо меньше выборочной средней у.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >