Меню
Главная
Авторизация/Регистрация
 
Главная arrow Медицина arrow ГЕНЕТИКА
Посмотреть оригинал

Биотехнология в животноводстве

Открытия в области структуры генома, сделанные в середине XX в., дали мощный толчок к созданию принципиально новых систем направленного изменения генома живых существ. Одним из таких направлений является интеграция в геном животных генных конструкций, связанных с процессами регуляции обмена веществ, что обеспечивает последующее изменение и ряда биологических и хозяйственно полезных признаков животных.

Животных, несущих в своем геноме рекомбинантный (чужеродный) ген, принято называть трансгенными, а ген, интегрированный в геном реципиента, - трансгеном. Благодаря переносу генов у трансгенных животных возникают новые признаки, которые при селекции закрепляются в потомстве. Так создают трансгенные линии.

Трансгенных животных получают путем микроинъекции рекомбинантной ДНК в извлеченные из донорских организмов эмбрионы и дальнейшей пересадки инъецированных эмбрионов в яйцеводы или методом культивирования в матку синхронизированных реципиентов. Эффективность получения трансгенных животных во многом зависит от чистоты и концентрации инъекционного раствора ДНК. Для трансформации генов в геном животного используют: микроинъекцию ДНК в пронуклеус зигот или в каждый бластомер двухклеточного эмбриона; введение ДНК с помощью ретровирусных векторов; получение трансгенных химер из генетически трансформированных клеток и эмбрионов.

Одни из важнейших задач сельскохозяйственной биотехнологии - выведение трансгенных животных с улучшенной продуктивностью и более высоким качеством продукции, резистентностью к болезням, а также создание так называемых животных-биореакторов - продуцентов ценных биологически активных веществ.

С генетической точки зрения особый интерес представляют гены, кодирующие белки каскада гормона роста: непосредственно гормон роста и рилизинг-фактор гормона роста. Рилизинг-фактор гормона роста стимулирует синтез и секрецию гормона роста. Гормон роста является регулятором многих процессов обмена веществ, в том числе белкового и липидного.

По данным Л.К. Эрнста у трансгенных свиней с геном рштизинг- фактора гормона роста толщина шпика была на 24,3 % ниже контроля. Существенные изменения отмечены по уровню липидов в длиннейшей мышце спины. Так, содержание общих липидов в этой мышце у трансгенных свинок было меньше на 25,4 %, фосфолипидов - на 32,2 %, холестерина - на 27,7 %. Таким образом, трансгенные свиньи характеризуются повышенным уровнем ингибирования липогенеза.

Потери в животноводстве, вызванные различными болезнями, велики, поэтому все более важное значение приобретает селекция животных по резистентности к болезням, вызываемым микроорганизмами, вирусами, паразитами и токсинами. Установлено, что защитные механизмы от инфекционных заболеваний обусловлены либо препятствием вторжению возбудителя, либо изменением рецепторов. Вторжению возбудителей и их размножению препятствуют в основном иммунная система организма и экспрессия генов главного комплекса гистосовместимости. Одним из примеров гена резистентности у мышей служиг ген Мх. Этот ген, обнаруженный в модифицированной форме у всех видов млекопитающих, вырабатывает у Мх+-мышей иммунитет к вирусу гриппа А. Ген Мх* был выделен, клонирован и использован для получения трансгенных свиней, экспрессирующих ген Мх на уровне РНК. Однако данные о трансляции Мх-протеина, обусловливающего устойчивость трансгенных свиней к вирусу гриппа А, пока не получены.

Ведутся исследования, направленные на получение трансгенных животных, резистентных к маститу за счет повышения содержания белка лак- тоферина в тканях молочной железы. На культуре клеток из почек трансгенных кроликов было показано, что клеточные линии, содержащие трансгенную антисмысловую РНК, имели резистентность к аденовирусу Н5 (Ads) на уровне 90-98 %, более высокую по сравнению с контрольными линиями клеток. Продемонстрирована также устойчивость трансгенных животных с геном антисмысловой РНК к лейкозу крупного рогатого скота, к заражению вирусом лейкоза.

Показана возможность конструирования системы внутриклеточной иммунизации против инфекционных вирусов с участием мутантных форм эндогенных вирусных белков, защищающих от соответствующих вирусов. Так, получены трансгенные куры, устойчивые к лейкозу, у которых в клетках присутствовал белок вирусной оболочки.

Очень важно использование трансгенных животных в медицине и ветеринарии для получения биологически активных соединений за счет включения в клетки организма генов, вызывающих у них синтез новых белков.

Трансгенные животные как продуценты ценных биологически активных белков и гормонов имеют ряд преимуществ перед микроорганизмами и клеточными системами. Важно, что новые белки, получаемые в линиях клеток трансгенных животных, могут быть модифицированы, их активность сравнима с активностью протеинов. Для молочного производства большой интерес представляет получение целенаправленной трансгенной экспрессии в эпителиальные клетки молочной железы для выхода белков с молоком. Один из основных этапов получения трансгенных животных, продуцирующих гетерогенный белок с молоком, - идентификация промотора, направляющего экспрессию структурных генов в секреторный эпителий молочной железы.

В настоящее время выделены гены и промоторы о67-казеина, Р-казеина, а-лактоальбумина, Р-лактоглобулина и сывороточного кислого протеина (WAP). Молочная железа - великолепный продуцент чужеродных белков, которые можно получать из молока и использовать в фармацевтической промышленности. Из молока трансгенных животных извлекают следующие рекомбинантные белки: человеческий белок С, антигемофиль- ный фактор IX, а-1-антитрипсин, тканевой плазменный активатор, лакто- ферин, сывороточный альбумин, интерлейкин-2, урокиназу и химозин. В большинстве проектов, за исключением а-1-антитрипсина и химозина, исследования пока еще ведутся в основном на трансгенных мышах.

В США осуществлен метод микроинъекции ДНК, отвечающий за экспрессию Р-лактоглобулина, который способен продуцироваться только в молочных железах животных. В Эдинбурге в 1992 г. были выведены трансгенные овцы с геном а-1-антитрипсина человека и р-глобулиновым промотором. Содержание этого белка у разных трансгенных овец составляло от I до 35 г/л, что соответствует половине всех белков в молоке. При таком уровне продукции белка может быть получено около 10 кг трансгенного белка от одного животного в год, что достаточно для 50 пациентов при лечении эмфиземы легких. Обычно выход рекомбинантных белков в системах с использованием культуры клеток составляет около 200 мг/л, а у трансгенных животных он может повышаться до 1 л. Следует отметить, что процедуры по созданию клеточных культур и их выращиванию в промышленных реакторах, а также по выведению трансгенных животных и их обслуживанию весьма дороги. Однако трансгенные животные легко размножаются, содержание их сравнительно дешево, что делает их хорошими продуцентами разнообразных белков с низкой стоимостью. В России группой ученых под руководством Л.К. Эрнста и М.И. Прокофьева получены трансгенные овцы с геном химозина - основного компонента для производства сыра. В 1 л молока содержится 200-300 мг химозина. Стоимость сыра будет в несколько раз ниже продукта, получаемого традиционным способом из сычугов молочных телят и ягнят. Так, из 3 л молока трансгенной овцы можно получить количество химозина, достаточное для производства 1 т сыра из коровьего молока.

 
Посмотреть оригинал
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
Популярные страницы