Ранговый коэффициент корреляции Спирмена

Для измерения степени тесноты связи между ранжировками хк х2 ..., х(к) и xj х2 ..., x(nJ) К. Спирмен в 1904 г. предложил показатель

который впоследствии назвали ранговым коэффициентом корреляции Спирмена. Прямым подсчетом нетрудно убедиться, что r^s) = 1 для совпадающих ранжировок, когда xjk) = xjJ) для всех i = 1, 2, ..., п. В противном случае, когда X; =n-xjJ) +1 для всех i = 1, 2, ..., п, он равен r^s) =-1. Во всех остальных случаях |г^5)|< 1.

Рассмотренная формула (5.3) пригодна для случая отсутствия объединенных рангов в обеих исследуемых ранжировках.

В общем случае, когда имеют место объединенные ранги, для каждой ранжировки по k-му признаку определяют величину

где т№ — число групп неразличимых рангов у переменной а п(к)число элементов (рангов), входящих в t группу неразличных рангов. В случае отсутствия объединенных рангов т(к) = п, а пк) = ... = п(к) = 1 и Т(к) = 0. Тогда ранговый коэффициент Спирмена определяется по формуле

Если 7W и ТО) значительно меньше ~ХпЛ~п), то можно воспользо-

6

ваться приближенным соотношением

Два эксперта проранжировали 10 предложенных на конкурс проектов с точки зрения их эффективности.

Ранжировка 1-го эксперта: (1; 2; 3; 4; 5; 6; 7; 8; 9; 10).

Ранжировка 2-го эксперта: (2; 3; 1; 4; 6; 5; 9; 7; 8; 10).

Вычисления по (5.3)

что свидетельствует о положительной ранговой связи между переменными, т.е. мнения экспертов очень близки.

Пример 5.3

Десять предприятий подотрасли были проранжированы вначале по степени их инвестиционной привлекательности (признак#!), а затем по эффективности их функционирования в отчетном году — #2*

В результате получены ранжировки:

(1; 2,5; 2,5; 4,5; 4,5; 6,5; 6,5; 8; 9,5; 9,5) и (1; 2; 4,5; 4,5; 4,5; 4,5; 8; 8; 8; 10).

В первой ранжировке — четыре группы неразличимых рангов, а во второй — две такие группы.

Согласно (5.4) получаем

так как Т( 1) и Т(2) значительно меньше — (т?3 -/?) = — • 990 = 165, то воспользуемся

6 6

формулой (5.6).

Тогда

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >