Экранированный потенциал ядра

Покажем пример использования информации о волновой функции основного состояния атома водорода.

В целом атом водорода состоит из двух заряженных частиц, положение которых в пространстве заведомо не совпадает. Такая система из двух зарядов должна создавать некоторое распределение электростатического потенциала в окружающем пространстве. Для определения этого потенциала прибегают по-существу к эргодической гипотезе, считая, что электрон проводит в объеме (IV долю времени, пропорциональную плотности вероятности обнаружения электрона. Иными словами, вводят усредненное ^шспределепие g заряда в пространстве с помощью соотношения

Такое определение плотности заряда автоматически обеспечивает необходимое равенство J gdV = —е.

Тогда для основного состояния атома водорода, подставляя в (4.275) волновую функцию V;iO(h получим

Чтобы найти потенциал U(r), создаваемый в пространстве электронной плотностью заряда р(г), воспользуемся теоремой Гаусса, в соответствии с которой поток вектора напряженности электрического поля через замкнутую поверхность равен заряду, заключенному внутри поверхности, деленному на so. Отсюда с учетом сферической симметрии имеем:

Отметим, что использование теоремы Гаусса автоматически обеспечило выполнение условия Ег(0) = 0.

Интеграл в правой части элементарный, он без труда вычисляется интегрированием по частям. Учтя, что напряженность поля есть градиент потенциала, взятый с обратным знаком, то есть что ЕТ = —dU/dr, и взяв интеграл в правой части (4.277), получим:

Теперь осталось только взять интеграл от правой части последнего равенства, и выбрать потенциал, который стремится к нулю в бесконечности. Дело снова сводится к взятию интеграла, причем нетрудно разглядеть, что первые два слагаемых в круглых

скобках последнего выражения являются полной производной —

функции (е — 1 )/г, а интеграл от третьего слагаемого элементарный, так что в результате для среднего потенциал электронной оболочки получаем:

Нетрудно видеть, что получился конечный в нуле158 потенциал, стремящийся к нулю в бесконечности. Поскольку атом состоит из протона и электрона, то суммарный электростатический но- тенциал, создаваемый атомом, будет суммой кулоновского потенциал протона и среднего потенциача электронной оболочки:

или

Как видно, при г —» 0 потенциал (4.279) эквивалентен кулоновскому потенциалу ядра, который на больших расстояниях экранируется электронной оболочкой. Этот результат является квантовым аналогом классической экранировки кулоновского заряда в проводящих средах.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >