Ионизационные радиационные детекторы в радиоизотопной диагностике

Рассмотрим несколько практических аспектов, связанных с применением и особенностью конструкции некоторых типов ионизационных детекторов в ядерной медицине.

Первое: для того чтобы зарегистрировать ионизирующее излучение, оно должно быть направлено на детектор. Это имеет особое значение при детектировании излучения, которое испускается изотропно, т. е. с равной вероятностью по разным направлениям. Относительная доля частиц, движущаяся в направлении детектора, называется геометрической эффективностью egt и зависит от размера и формы детектора и расстояния между источником и детектором. Специальный, но достаточно распространенный случай представляет точечный источник, расположенный в неослабляющей излучение среде на расстоянии г от оси цилиндрического детектора радиусом а (рис. 2.5, а). Доля излучения, испускаемая в конус в направлении детектора, равна

где приближенное равенство выполняется для г » а.

Радиоактивный источник в неослабляющей излучение среде (а) и внутри детектора колодезного типа (6)

Рис. 2.4. Радиоактивный источник в неослабляющей излучение среде (а) и внутри детектора колодезного типа (6)

Как пример важности геометрической эффективности рассмотрим два случая. Пусть маленькая капля радиоактивности разлита на торцовой поверхности цилиндрического детектора. В этом варианте г = О, поэтому Sg = 1/2, т. е. половина эмиссии направляется в сторону детектора, а половина уходит в пространство вне детектора. Пусть теперь небольшой источник размещается на дне цилиндрической воздушной полости (колодца) в цилиндрическом детекторе (рис. 2.5, б). Такая геометрия используется при калибровке источников. Уравнение (2.3) теперь определяет долю испускаемого источником излучения, которое выходит через открытый верх колодца в детекторе. Если глубина колодца 27 см и диаметр 7 см, то эта доля равняется 0,0041. Следовательно, доля частиц, проходящих через детектор в этом варианте, равна 0,996. Таким образом, данный тип детекторов очень высокую геометрическую эффективность.

Второе: чтобы произошла регистрация ионизирующей частицы, она должна иметь возможность или проникнуть в детектор через стенки детектора, или образовать в стенках детектора вторичные электроны, проникающие в чувствительный объем детектора. Эта проблема ввиду малости пробегов имеет особое значение для а-частиц и низко энергетических (3-частиц. Поэтому при их регистрации входные окошки детекторов делают очень малой толщины и изготавливаются из материалов с малым атомным номером. Конструкция некоторых пропорциональных счетчиков позволяет вводить источники прямо внутрь чувствительного объема счетчика, после чего объем заполняется электроотрицательным газом. При регистрации же у-излучения, так как оно является редко ионизирующим излучением, возникает противоположная проблема, а именно, малая вероятность взаимодействия фотонов с веществом газа при средних и высоких энергиях излучения. Чтобы процесс регистрации таких фотонов проходил с заметной эффективностью необходимо взаимодействие излучения со стенками детектора.

Таким образом, физическая (внутренняя) эффективность детектирования представляет собой вероятность того, что частица радиации, входящая в детектор, будет иметь взаимодействие с веществом детектора, в результате чего произойдет передача энергии от частицы в вещество, приводящее к образованию первичной ионизации в чувствительном объеме детектора.

Другими словами, эффективность регистрации у-излучения гу с помощью счетчиков Гейгера-Мюллера можно определить как число вторичных электронов, попадающих в чувствительный объем счетчика, приходящихся на один фотон, падающий на счетчик. Попасть в чувствительный объем и вызвать разряд могут лишь те вторичные электроны, которые образуются в стенках на расстояниях от внутренней поверхности, не превышающих длину пробега этих электронов в материале стенки. Точное вычисление гу представляет трудную задачу. Приближенное выражение имеет вид

где т, а, х — линейные коэффициенты ослабления фотонов в материале стенок путем фотоэлектрического поглощения, комптоновского рассеяния и процесса образования пар; Кт, RG, Ry — пробеги соответствующих вторичных электронов в материале стенок.

Типичные зависимости эффективности регистрации от энергии у-излучения для счетчиков Гейгера-Мюллера с разными материалами катодов показаны на рис. 2.5.

Зависимость эффективности регистрации фотонов от их энергии для счетчиков Гейгера-Мюллера с разными материалами катодов

Рис. 2.5. Зависимость эффективности регистрации фотонов от их энергии для счетчиков Гейгера-Мюллера с разными материалами катодов

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >