Метод анализа размерностей

В случаях, когда изучаемые процессы не описываются дифференциальными уравнениями, одним из путей их анализа является эксперимент, результаты которого наиболее целесообразно представлять в обобщенной форме (в виде безразмерных комплексов). Методом составления таких комплексов является метод анализа размерностей.

Размерность какой-либо физической величины определяется соотношением между ней и теми физическими величинами, которые приняты за основные (первичные). В каждой системе единиц имеются свои основные единицы. Например, в Международной системе единиц измерения СИ за единицы измерения длины, массы и времени соответственно приняты метр (м), килограмм (кг), секунда (с). Единицы измерения остальных физических величин, так называемых производных величин (вторичных), принимаются на основании законов, устанавливающих связь между этими единицами. Эта связь может быть представлена в виде так называемой формулы размерности.

Теория размерностей основана на двух положениях.

  • 1. Отношение двух числовых значений какой-либо величины не зависит от выбора масштабов для основных единиц измерения (например, отношение двух линейных размеров не зависит от того, в каких единицах они будут измеряться).
  • 2. Любое соотношение между размерными величинами можно сформулировать как соотношение между безразмерными величинами. Это утверждение представляет так называемую П-теорему в теории размерностей.

Из первого положения следует, что формулы размерности физических величин должны иметь вид степенных зависимостей

где – размерности основных единиц.

Математическое выражение П-теоремы можно получить, исходя из следующих соображений. Пусть некоторая размерная величина а1 является функцией нескольких независимых между собой размерных величин , т.е.

Отсюда следует, что

Допустим, что число основных размерных единиц, через которые могут быть выражены все п переменных величин, равно т. П-теорема устанавливает, что если все п переменных величин выразить через основные единицы, то их можно сгруппировать в безразмерных П-членов, т.е.

При этом каждый П-член будет содержатьпеременную величину.

В задачах гидромеханики число переменных, входящих в П-члены, должно равняться четырем. Три из них будут определяющими (обычно это характерная длина, скорость течения жидкости и ее плотность) – они входят в каждый из П-членов. Одна из этих переменных (четвертая) является различной при переходе от одного П-члена к другому. Показатели степени определяющих критериев (обозначим их через х, у, z) являются неизвестными. Показатель степени четвертой переменной для удобства примем равным -1.

Соотношения для П-члснов будут иметь вид

Входящие в П-члены переменные можно выразить через основные размерности. Так как эти члены являются безразмерными, то показатели степени каждой из основных размерностей должны быть равны нулю. В результате для каждого из П-членов можно составить по три независимых уравнения (по одному для каждой размерности), которые связывают показатели степени входящих в них переменных. Решение полученной системы уравнений дает возможность найти числовые значения неизвестных показателей степени х, у, z. В итоге каждый из П-членов определяется в виде формулы, составленной из конкретных величин (параметров среды) в соответствующей степени.

В качестве конкретного примера найдем решение задачи определения потерь напора на трение при турбулентном течении жидкости [16].

Из общих соображений можно заключить, что потеря давленияв трубопроводе зависит от следующих основных факторов: диаметра d, длины l, шероховатости стенок k, плотности ρ и вязкости µ среды, средней скорости течения v, начального напряжения сдвига, т.е.

или

(5.8)

Уравнение (5.8) содержит п=7 членов, а число основных размерных единиц. Согласно П-теореме получим уравнение, состоящее избезразмерных П-членов:

(5.9)

Каждый такой П-член содержит 4 переменные. Принимая в качестве основных переменных диаметр d, скорость v, плотность и комбинируя их с остальными входящими в уравнение (5.8) переменными, получаем

Составляя уравнение размерности для первого П-члена, будем иметь

Складывая показатели степени при одинаковых основаниях, находим

Для того чтобы размерность П1 была равна 1 (П1 – безразмерная величина), необходимо потребовать равенства нулю всех показателей степеней, т.е.

(5.10)

Система алгебраических уравнений (5.10) содержит три неизвестные величины x1, у1,z1. Из решения этой системы уравнений находим x1 = 1; у1=1; z1= 1.

Подставляя эти значения показателей степени в первый П-член, получаем

Аналогично для остальных П-членов будем иметь

Подставляя полученные П-члены в уравнение (5.9), находим

Решим это уравнение относительно П4:

Выразим отсюда :

Учитывая, что потери напора на трение равны разности пьезометрических напоров, будем иметь

Обозначив комплекс, находящийся в квадратных скобках, через, окончательно получим

Последнее выражение представляет известную формулу Дарси – Вейбаха, где

Формулы для расчета коэффициента трения к рассмотрены в параграфах 6.13, 6.14.

 
< Пред   СОДЕРЖАНИЕ     След >