Линейная функция

Линейной называется функция вида у = ах + 6, где а и b — некоторые числа.

Геометрический смысл коэффициентов

Выясним геометрический смысл коэффициентов а и 6 линейной функции у = ах + 6. Для этого воспользуемся инструментом под названием «Ползунок».

Построение.

1) Нажимаем клавишу (тем самым берем инструмент) «Ползунок» и кликнем на выбранную точку Полотна. В выпавшем меню компьютер предлагает назвать ползунок, а вместе с ним и параметр, который он изображает, буквой а и установить границы изменения параметра от -5 до 5. Соглашаемся или вводим свои границы. На выбранном месте появляется изображение ползунка .в виде отрезка с точкой. Аналогично строим ползунок для параметра Ь. Изменение каждого из параметров достигается перемещением точки на отрезке. На рисунке 21 установлено: а = 1.6, Ь = 5. 2 3

Рис. 21.

  • 2) В строку ввода записываем: f(x) = a*x+b. После ввода на Полотне появляется график функции при установленных значениях параметров. В нашем случае это прямая. Отмечаем точки Aw В построенной прямой с осями координат.
  • 3) Строим начало координат О = (0.0), через начало координат проводим прямую параллельно данной прямой, строим точку Е = (1,0), через неё проводим вертикаль и отмечаем точку С пересечения вертикали с прямой, проходящей через начало координат параллельно данной прямой. Угловой коэффициент прямой есть по определению к = у(С). Вводим это число и делаем надпись: «Угловой коэффициент к = у(С) = к». При этом последнее к берем из «Объектов».

Теперь проводим исследование. Видим, что параметр b есть ордината точки В. Это неудивительно, поскольку /(0) = Ь. При изменении параметра а наблюдаем неизменное равенство а = к. Другими словами, коэффициент а равен угловому коэффициенту данной прямой.

Задания. С помощью живого рисунка 21 продемонстрируйте частные случаи линейной функции f(x) = ах + b: 1) а = 1, b = 0; 2) а = 0, b = 1;

3) анимируйте а (Ь) при фиксированном Ь (а).

Физический смысл коэффициентов линейного уравнения

Выясним физический смысл коэффициентов в уравнении прямой у = кх + Ь.

На живом рисунке 22 точка С равномерно движется от начала координат вверх по оси ординат со скоростью v. (Например, воздушный шар поднимается с земли с постоянной скоростью.) За время х точка С пройдет путь у = vx. Получили линейную функцию вида у = кх. Следовательно, физический смысл углового коэффициента к состоит в том, что он равен скорости равномерного движения у = vx. Если в начальный момент точка С находится не в начале координат, а отстоит от него на расстоянии Ьу то зависимость пройденного расстояния от времени выразится равенством у = vx + Ь.

Смоделируем движение, задаваемое линейной функцией у = их.

Построение (рис. 22).

Рис. 22.

  • 1) Строим точки О = (0,0), Е = (1,0), единичную окружность, отмечаем на ней точку А и проводим прямую О А.
  • 2) Проводим вертикаль через точку Е и отмечаем точку D пересечения вертикали с прямой О А.
  • 3) На положительном луче оси абсцисс строим отрезок OF и отмечаем на нём точку X. Проводим через неё вертикаль и отмечаем точку В пересечения вертикали с прямой О А. Через В проводим горизонталь и отмечаем точку С пересечения горизонтали с осью ординат. Делаем эту точку большой, в виде шара.

При анимации точки X точка С демонстрирует равномерное движение по вертикали (шар поднимается вверх). Заметим, что для достижения равномерного движения точки X её нужно взять именно на отрезке оси абсцисс. Чем меньше скорость, тем больше времени требуется для прохождения данного расстояния. Следовательно, при малой скорости (при малом угле наклона прямой) отрезок AFy по которому перемещается точка X, нужно удлинять, а при большой скорости (при большом угле наклона прямой О А) — укорачивать.

п г

На рисунке 22 видим, что угловой коэффициент к = tga = 7777- Сле-

ОЕ

довательно, к есть отношение пройденного пути к единице измерения времени. Таким образом, к есть скорость равномерного движения. Изменяя положение точки А на окружности, наблюдаем изменение скорости движения шара С.

Задание. Смоделируйте равномерное движение точки оси абсцисс по закону у = vx + Ь.

Построение графика линейной функции на основе геометрического моделирования операций

Создадим в среде GeoGebra виртуальный прибор для вычерчивания графика линейной функции у = кх + 6, используя геометрическое моделирование операций над действительными числами.

Построение {рис. 23).

  • 1) На оси ординат отмечаем коэффициенты к и Ь точками соответственно К(0, к) и В(О, Ь).
  • 2) На оси абсцисс отмечаем точку X(х, 0) и проводим через неё вертикальную прямую, которую будем называть собирательной прямой.
  • 3) На оси ординат строим произведение кх. Для этого строим точку Е = (1,0), точку К соединяем отрезком с точкой Е, а затем через точку X проводим прямую параллельно построенному отрезку. Эта прямая пересечёт ось ординат в точке F(0, кх).
  • 4) Проектируем точку F на собирательную прямую и получаем точку G(x, кх).
  • 5) Отмечаем точку О пересечения осей координат, соединяем отрезком точки О и G, а затем через точку В проводим прямую параллельно отрезку OG. Построенная прямая является искомой. Чтобы в этом убе-

Рис. 23.

литься, отмечаем точку Я пересечения построенной прямой с собирательной прямой и заставляем её оставлять след. При анимации точки X точка Я вычерчивает прямую, совпадающую с построенной прямой. С другой стороны, эта точка имеет координаты Н(х, кх + 6), а значит вычерчивает прямую у = кх + 6.

Заметим, что точку Я можно построить параллельным переносом точки G на вектор О В (см. живой рис. 23-доп).

Напомним, что коэффициент к прямой у = кх + Ь равен тангенсу угла наклона этой прямой к оси абсцисс, и это можно увидеть, исходя из построений. В самом деле, угол наклона построенной прямой т к оси абсцисс равен углу ZGOX, а тангенс этого угла равен по определению отно-

кх

шению второй координаты точки G к первой координате, то есть — = к.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >