Разнокачественность форм жизни и биогенный круговорот.
Специфическое свойство жизни — обмен веществ со средой. Любой организм должен получать из внешней среды определенные вещества как источники энергии и материал для построения собственного тела. Продукты метаболизма, уже непригодные для дальнейшего использования, выводятся наружу. Таким образом, каждый организм или множество одинаковых организмов (популяция, вид) в процессе своей жизнедеятельности ухудшают условия своего обитания. Возможность обратного процесса — поддержания жизненных условий или даже их улучшения, — о чем говорилось выше, определяется тем, что биосферу населяют разные организмы (виды) с разным типом обмена веществ.
Физиологическая разнокачественность живых организмов представляет собой фундаментальное условие устойчивого существования жизни как планетарного явления. Теоретически можно представить возникновение жизни в одной форме, но в этом случае запрограммирована конечность жизни как явления: видоспецифичность обмена веществ неизбежно ведет к исчерпанию ресурсов и «загрязнению» среды продуктами жизнедеятельности, которые невозможно использовать вторично.
Устойчивое существование жизни возможно лишь при многообразии, разнокачественности ее форм, специфика обмена которых обеспечивает последовательное использование выделяемых в среду продуктов метаболизма, формирующее генеральный биогенный круговорот веществ. Это отмечал еще В. И. Вернадский: «Геохимика может интересовать только проблема создания комплекса жизни в биосфере, т. е. создание биосферы» (В. И. Вернадский, 1967).
В простейшем виде такой комплементарный набор качественных форм жизни представлен продуцентами, консументами и редуцентами, совместная деятельность которых обеспечивает извлечение определенных веществ из внешней среды, их трансформацию на разных уровнях трофических цепей и минерализацию органического вещества до составляющих, доступных для очередного включения в круговорот1.
Продуценты — это живые организмы, которые способны синтезировать органическое вещество из неорганических составляющих с использованием внешних источников энергии. (Отметим, что получение энергии извне — общее условие жизнедеятельности всех организмов; по энергии все биологические системы — открытые.) Их называют также автотрофами, поскольку они сами снабжают себя органическим веществом. В природных сообществах продуценты выполняют функцию производителей органического вещества, накапливаемого в тканях этих организмов. Органическое вещество служит и источником энергии для процессов жизнедеятельности; внешняя энергия используется лишь для первичного синтеза.
Все продуценты по характеру источника энергии для синтеза органических веществ подразделяются на фотоавтотрофов и хемоавто- трофов. Первые используют для синтеза энергию солнечного излучения в части спектра с длиной волны 380—710 нм. Это главным образом зеленые (хлорофиллоносные) растения, но к фотосинтезу способны и представители некоторых других царств органического мира. Среди них особое значение имеют цианобактерии (синезеленые «водоросли»), которые, по-видимому, были первыми фотосинтетиками в эволюции жизни на Земле. Способны к фотосинтезу также многие бактерии, которые, правда, используют особый пигмент — бактериох- лорин — и не выделяют при фотосинтезе кислород. Основные исходные вещества, используемые для фотосинтеза, — диоксид углерода и вода (основа для синтеза углеводов), а также азот, фосфор, калий и другие элементы минерального питания.
Создавая органические вещества на основе фотосинтеза, фотоавто- трофы, таким образом, связывают использованную солнечную энергию, как бы запасая ее. Последующее разрушение химических связей ведет к высвобождению такой «запасенной» энергии. Это относится не только к использованию органического топлива; «запасенная» в тканях растений энергия передается в виде пищи по трофическим цепям и служит основой потоков энергии, сопровождающих биогенный круговорот веществ.
Хемоавтотрофы в процессах синтеза органического вещества используют энергию химических связей. К этой группе относятся только прокариоты: бактерии, архебактерии и отчасти синезеленые. Химическая энергия высвобождается в процессах окисления минеральных веществ. Экзотермические окислительные процессы используются нитрифицирующими бактериями (окисляют аммиак до нитритов, а затем до нитратов), железобактериями (окисление закисного железа до окис- ного), серобактериями (сероводород до сульфатов). Как субстрат для окисления используется также метан, СО и некоторые другие вещества.
При всем многообразии конкретных форм продуцентов-автотро- фов их общая биосферная функция едина и заключается в вовлечении элементов неживой природы в состав тканей организмов и таким образом в общий биологический круговорот. Суммарная масса автотро- фов-продуцентов составляет более 95 % массы всех живых организмов в биосфере.
Консументы - живые существа, не способные строить свое тело на базе использования неорганических веществ, требующие поступления органического вещества извне, в составе пищи, относятся к группе гетеротрофных: организмов, живущих за счет продуктов, синтезированных фото- или хемосинтетиками. Пища, извлекаемая тем или иным способом из внешней среды, используется гетеротрофами на построение собственного тела и как источник энергии для различных форм жизнедеятельности. Таким образом, гетеротрофы используют энергию, запасенную автотрофами в виде химических связей синтезированных ими органических веществ. В потоке веществ по ходу круговорота они занимают уровень потребителей[1], облигатно связанных с автотрофными организмами (консументы I порядка) или с другими гетеротро- фами, которыми они питаются (консументы II порядка; рис. 2.1).

Рис. 2.1. Упрощенная схема переноса вещества (сплошная линия) и энергии (пунктирная линия) в процессе биологического круговорота (по В. Е. Соколову, И. А. Шилову, 1989)
К консументам относится огромное количество живых организмов из разных таксонов. Их нет лишь среди цианобактерий и водорослей. Из высших растений к консументам относятся бесхлорофилльные формы, паразитирующие на других растениях; частично положение консументов занимают и растения со смешанным питанием (например, насекомоядные типа росянки). Все животные — консументы, и их роль в поддержании устойчивого биогенного круговорота очень велика.
Общее значение консументов в круговороте веществ своеобразно и неоднозначно. Они не обязательны в прямом процессе круговорота: искусственные замкнутые модельные системы, составленные из зеленых растений и почвенных микроорганизмов, при наличии влаги и минеральных солей могут существовать неопределенно долгое время за счет фотосинтеза, деструкции растительных остатков и вовлечения высвобожденных элементов в новый круговорот. Но это возможно лишь в стабильных лабораторных условиях. В природной обстановке возрастает вероятность гибели таких простых систем от многих причин. «Гарантами» устойчивости круговорота и оказываются в первую очередь консументы.
В процессе собственного метаболизма гетеротрофы разлагают полученные в составе пищи органические вещества и на этой основе строят вещества собственного тела. Трансформация первично продуцированных автотрофами веществ в организмах консументов ведет к увеличению разнообразия живого вещества. Разнообразие же — необходимое условие устойчивости любой кибернетической системы на фоне внешних и внутренних возмущений (принцип Эшби). Живые системы — от организма до биосферы в целом — функционируют по кибернетическому принципу обратных связей. В дальнейшем тексте мы не раз встретимся с важностью различных форм биологического разнообразия (биологической разнокачественности) для устойчивого функционирования экосистем[2].
Животные, составляющие основную часть организмов-консументов, отличаются подвижностью, способностью к активному перемещению в пространстве. Этим они эффективно участвуют в миграции живого вещества, дисперсии его по поверхности планеты, что, с одной стороны, стимулирует пространственное расселение жизни, а с другой — служит своеобразным «гарантийным механизмом» на случай уничтожения жизни в каком-либо месте в силу тех или иных причин.
Примером такой «пространственной гарантии» может служить широко известная катастрофа на о. Кракатау: в результате извержения вулкана в 1883 г. жизнь на острове была полностью уничтожена, но в течение всего 50 лет восстановилась — было зарегистрировано порядка 1200 видов. Заселение шло главным образом за счет не затронутых извержением Явы, Суматры и соседних островов, откуда разными путями растения и животные вновь заселили покрытый пеплом и застывшими потоками лавы остров. При этом первыми (уже через 3 года) на вулканическом туфе и пепле появились пленки цианобактерий. Процесс становления устойчивых сообществ на острове продолжается; лесные ценозы еще находятся на ранних стадиях сукцессии и сильно упрощены по структуре.
Наконец, чрезвычайно важна роль консументов, в первую очередь животных, как регуляторов интенсивности потоков вещества и энергии по трофическим цепям. Способность к активной авторегуляции биомассы и темпов ее изменения на уровне экосистем и популяций отдельных видов в конечном итоге реализуется в виде поддержания соответствия темпов создания и разрушения органического вещества в глобальных системах круговорота. Участвуют в такой регуляторной системе не только консументы, но последние (особенно животные) отличаются наиболее активной и быстрой реакцией на любые возмущения баланса биомассы смежных трофических уровней. Подробнее регуляторные механизмы в популяциях и экосистемах будут рассмотрены ниже.
В принципе система регулирования потоков вещества в биогенном круговороте, основанная на комплементарности составляющих эту систему экологических категорий живых организмов, работает по принципу безотходного производства. Однако в идеале этот принцип соблюден быть не может в силу большой сложности взаимодействующих процессов и влияющих на них факторов. Результатом нарушения полноты круговорота явились отложения нефти, каменного угля, торфа, сапропелей. Все эта вещества несут, в себе энергию, первоначально запасенную в процессе фотосинтеза. Использование их человеком — как бы «отставленное во времени» завершение циклов биологического круговорота.
Редуценты - к этой экологической категории относятся организмы- гетеротрофы, которые, используя в качестве пищи мертвое органическое вещество (трупы, фекалии, растительный опад и пр.), в процессе метаболизма разлагают его до неорганических составляющих.
Частично минерализация органических веществ идет у всех живых организмов. Так, в процессе дыхания выделяется С02, из организма выводятся вода, минеральные соли, аммиак и т. д. Истинными редуцентами, завершающими цикл разрушения органических веществ, следует поэтому считать лишь такие организмы, которые выделяют во внешнюю среду только неорганические вещества, готовые к вовлечению в новый цикл.
В категорию редуцентов входят многие виды бактерий и грибов. По характеру метаболизма это организмы-восстановители. Так, денитрифицирующие бактерии восстанавливают азот до элементарного состояния, сульфатредуцирующие бактерии — серу до сероводорода. Конечные продукты разложения органических веществ — диоксид углерода, вода, аммиак, минеральные соли. В анаэробных условиях разложение идет дальше — до водорода; образуются также углеводороды.
Полный цикл редукции органического вещества более сложен и вовлекает большее число участников. Он состоит из ряда последовательных звеньев, в череде которых разные организмы-разрушители поэтапно превращают органические вещества сначала в более простое формы и только после этого в неорганические составляющие действием бактерий и грибов.
В наземной среде основная часть процесса деструкции органических веществ идет в почве — еще один пример целостности биосферных процессов и функциональной связи разных сфер обитания жизни. Первичные стадии разложения проходят с участием животных, которые измельчают ткани пищевых объектов, в процессе пищеварения разлагают сложные молекулы белков, углеводов и других веществ на более простые, легко доступные для окончательной деструкции с помощью бактерий и грибов. Биомасса наиболее активных животных — участников разложения органики — достигает больших величин (табл. 2.1).
Количество бактерий, грибов, актиномицетов и простейших, с помощью которых постепенно завершается минерализация органического вещества, также крайне велико (табл. 2.2).
Численность наиболее обычных почвенных животных (экз/м2)
(По П. Дювиньо, М. Танг, 1968)
Таблица 2.1
Биотоп |
Насекомые и их личинки |
Дождевые черви |
Энхитре- иды |
Ногох- востки |
Клещи |
Нематоды, млн |
Леса |
3000 |
78 |
3500 |
40 000 |
80 000 |
6 |
Луга |
4500 |
97 |
10 500 |
20 000 |
40 000 |
5 |
Посевы |
1000 |
41 |
2000 |
10 000 |
10 000 |
1,5 |
Таблица 2.2
Численность микроорганизмов, млн/г сухой почвы (по И. М. Культиасову, 1982)
Организмы |
Весна |
Лето |
Осень |
Зима |
Кленовый лес |
||||
Бактерии |
58,40 |
40,50 |
23,50 |
55,10 |
Актиномицеты |
4,80 |
2,80 |
2,20 |
2,70 |
Грибы |
0,45 |
0,28 |
0,25 |
0,43 |
Дубовый лес |
||||
Бактерии |
27,40 |
13,20 |
13,40 |
40,10 |
Актиномицеты |
3,80 |
2,30 |
1,60 |
1,20 |
Грибы |
0,43 |
0,29 |
0,49 |
0,65 |
Активная деятельность организмов-разрушителей приводит к тому, что годичный опад органических веществ полностью разлагается в тропических дождевых лесах в течение 1—2 лет, в лиственных лесах умеренной зоны — за 2—4 года, в хвойных лесах — за 4—5 лет. В тундре процесс разложения может длиться десятки лет. Интенсивность минерализации во многом зависит от температуры, влажности и других факторов.