Гамма-распределение

Гамма-распределение является двухпараметрическим распределением. Оно занимает достаточно важное место в теории и практике надежности. Плотность распределения имеет ограничение с одной стороны (). Если параметр а формы кривой распределения принимает целое значение, это свидетельствует о вероятности появления такого же числа событий (например, отказов)

при условии, что они независимы и появляются с постоянной интенсивностью λ (см. рис. 4.4).

Гамма-распределение широко применяют при описании появления отказов стареющих элементов, времени восстановления, наработки на отказ резервированных систем. При различных параметрах гамма-распределение принимает разнообразные формы, что и объясняет его широкое применение.

Плотность вероятности гамма-распределения определяется равенством

где λ > 0, α > 0.

Кривые плотности распределения приведены на рис. 4.5.

Кривые плотности гамма-распределения при разных значениях α

Рис. 4.5. Кривые плотности гамма-распределения при разных значениях α

Функция распределения

Математическое ожидание и дисперсия равны соответственно

При α < 1 интенсивность отказов монотонно убывает, что соответствует периоду приработки изделия, при α > 1 – возрастает, что характерно для периода изнашивания и старения элементов.

При α = 1 гамма-распределение совпадает с экспоненциальным распределением, при α > 10 гамма-распределение приближается к нормальному закону. Если а принимает значения произвольных целых положительных чисел, то такое гамма-распределение называют распределением Эрланга. Если λ = 1/2, а значение а кратно 1 /2, то гамма-распределение совпадает с распределением χ2 (хи-квадрат).

Установление функции распределения показателей надежности по результатам обработки данных статистической информации

Наиболее полной характеристикой надежности сложной системы является закон распределения, выраженный в виде функции распределения, плотности распределения или функции надежности.

О виде теоретической функции распределения можно судить по эмпирической функции распределения (рис. 4.6), которая определяется из соотношения

где т, – число отказов на интервале времени t; N – объем испытаний; ti < t < ti+1 интервал времени, на котором определяют эмпирическую функцию.

Эмпирическая функция распределения

Рис. 4.6. Эмпирическая функция распределения

Построение эмпирической функции осуществляют, выполняя суммирование приращений, полученных на каждом интервале времени:

где k – число интервалов.

Эмпирическая функция надежности является функцией, противоположной функции распределения; ее определяют по формуле

Оценку плотности вероятности находят по гистограмме. Построение гистограммы сводится к следующему. Всю область значений времени t разбивают на интервалы t1, t2, ..., ti и для каждого из них осуществляют оценку плотности вероятности по формуле

где тi число отказов на i-м интервале, i = 1, 2,..., k; (ti+1 – ti) – отрезок времени i-го интервала; N – объем испытаний; k – число интервалов.

Пример гистограммы приведен на рис. 4.7.

Пример гистограммы

Рис. 4.7. Пример гистограммы

Сглаживая ступенчатую гистограмму плавной кривой, но ее виду можно судить о законе распределения случайной величины. В практике для сглаживания кривой часто, например, используют метод наименьших квадратов. Для более точного установления закона распределения необходимо, чтобы число интервалов было не менее пяти, а число реализаций, попадающих в каждый интервал, – не менее десяти.

Разночтения в понимании терминологии надежности

Проблема терминологии является достаточно сложной в различных областях науки и человеческой деятельности в целом. Известно, что споры о терминах ведутся в течение многих веков. Если коснуться переводов стихотворений, то можно увидеть яркое подтверждение этой мысли. Например, переводы такого всемирно известного шедевра, как "Гамлет", у Б. Л. Пастернака и Π. П. Гнедича резко отличаются. У первого из них смысл трагедии перевешивает музыку стиха, в отличие от второго. А оригинал "Гамлета", написанный языком XVI в., труден для понимания неангличанам, да и англичанам тоже, поскольку сам язык сильно эволюционировал за несколько веков, как, собственно, и любой другой язык в соответствии с законом синхронизма-десинхронизма.

Аналогичная картина наблюдается и в мировых религиях. Перевод Библии с церковно-славянского на русский язык, длившийся 25 лет, "развел" (вплоть до остановки перевода) святителя Филарета Московского (Дроздова) и крупнейшего церковного писателя – святителя Феофана Затворника (в ближайшее время запланировано издание собрания его сочинений в 42 т.). Переводы и уточнения "книги книг" Библии "переводят" людей в лагеря непримиримых врагов по жизни в нашем мире. Рождаются секты, еретики и герои, иногда даже льется кровь. А многочисленные переводы на русский язык основополагающей в сфере философии работы Иммануила Канта "Критика чистого разума" только укрепляют справедливость нашего тезиса о сложности проблемы терминологии (сверхбольшая система) в различных областях науки и человеческой деятельности в целом.

Антиномические явления имеют место в области науки и техники. Одно из решений проблемы обеспечения корректности и адекватности терминологии изложил Г. Лейбниц. Он в плане развития науки и техники в XVII в. предлагал для прекращения споров давать определения терминов с помощью универсального языка в цифровой форме (0011...).

Отметим, что в науке о надежности путь определения терминов традиционно решается на государственном уровне с помощью государственных стандартов (ГОСТов). Однако появление все более высокоинтеллектуальных технических систем, взаимодействие и сближение живых и неживых объектов, в них функционирующих, ставит новые, весьма трудные задачи обучения в педагогике и психологии, заставляет искать творческие компромиссные решения.

У зрелого и поработавшего в конкретной научной области, и в частности в области надежности, сотрудника актуальность вопросов терминологии не вызывает сомнений. Как писал Готфрид Вильгельм Лейбниц (в работе о создании универсального языка), споров было бы меньше, если бы термины были определены.

Разночтения в понимании терминологии надежности попытаемся сгладить следующими замечаниями.

Мы говорим "функция распределения" (ФР), опуская слово "наработка" или "отказ". Наработка чаще всего понимается как категория времени. Для невосстанавливаемых систем по смыслу более правильно надо говорить – интегральная ФР наработки до отказа, а для восстанавливаемых – наработка па отказ. А поскольку наработку чаще всего понимают как случайную величину, применяется отождествление вероятности безотказной работы (ВБР) и (1 – ФР), называемой в этом случае функцией надежности (ФН). Целостность такового подхода достигается за счет полной группы событий[1]. Тогда

ВБР = ФН = 1 – ФР.

То же справедливо в отношении плотности распределения (ПР), которая является первой производной от ФР, в частности по времени, и, образно говоря, характеризует "скорость" появления отказов.

Полнота описания надежности изделия (в частности, для изделий разового применения), включающая динамику устойчивости поведения, характеризуется интенсивностью отказов через отношение ПР к ВБР и физически понимается как смена состояния изделия, а математически – введена в теории массового обслуживания через понятие потока отказов и ряд допущений в отношении самих отказов (стационарность, ординарность и др.).

Интересующихся этими вопросами, возникающими при выборе показателей надежности на этапе проектирования изделий, можно отослать к трудам таких именитых авторов, как А. М. Половко, Б. В. Гнеденко, Б. Р. Левин – выходцев из лаборатории надежности при Московском университете, руководимой А. Н. Колмогоровым, а также А. Я. Хинчина, E. С. Венцель, И. А. Ушакова, Г. В. Дружинина, А. Д. Соловьева, Ф. Байхельта, Ф. Прошана – основателей статистической теории надежности.

  • [1] См.: Колмогоров А. Н. Основные понятия теории вероятностей. М. : Мир, 1974.
 
< Пред   СОДЕРЖАНИЕ     След >