Две независимые переменные

Попробуем для начала найти ответ на каждый из обозначенных нами вопросов в ситуации, когда наша каузальная модель содержит всего две независимые переменные.

Множественная корреляция R и коэффициент детерминация R2

Для оценки совокупной связи всех независимых переменных с зависимой переменной используется множественный коэффициент корреляции R. Отличие коэффициента множественной корреляции R от бивариативного коэффициента корреляции г заключается в том, что он может быть лишь положительным. Для двух независимых переменных он может быть оценен следующим образом:

Коэффициент множественной корреляции может быть определен и в результате оценки частных коэффициентов регрессии, составляющих уравнение (9.1). Для двух переменных это уравнение, очевидно, примет следующий вид:

(9.2)

Если наши независимые переменные будут трансформированы в единицы стандартного нормального распределения, или Z-распределения, уравнение (9.2), очевидно, примет следующий вид:

(9.3)

В уравнении (9.3) коэффициент β обозначает стандартизированное значение коэффициента регрессии В.

Сами стандартизированные коэффициенты регрессии могут быть вычислены по следующим формулам:

Теперь формула для вычисления коэффициента множественной корреляции будет выглядеть так:

Еще одним способом оценки коэффициента корреляции R является вычисление бивариативного коэффициента корреляции r между значениями зависимой переменной У и соответствующими им значениями , вычисленными на основании уравнения линейной регрессии (9.2). Иными словами, величина R может быть оценена следующим образом:

(9.4)

Наряду с этим коэффициентом мы можем оценить, как и в случае простой регрессии, величину R2, которую принято еще обозначать как коэффициент детерминации. Так же как и в ситуации оценки связи между двумя переменными, коэффициент детерминации R2 показывает, какой процент дисперсии зависимой переменной Y, т.е. , оказывается связанным с дисперсией всех независимых переменных – . Иными словами, оценка коэффициента детерминации может быть осуществлена следующем образом:

(9.5)

Также мы можем оценить процент остаточной дисперсии зависимой переменной, нс связанный ни с одной из независимых переменных 1 – R2. Квадратный корень от этой величины, т.е. величина , так же, как и в случае бивариативной корреляции, называют коэффициентом отчуждения.

Корреляция части

Коэффициент детерминация R2 демонстрирует, какой процент дисперсии зависимой переменной может быть связан с дисперсией всех независимых переменных, включенных в каузальную модель. Чем больше этот коэффициент, тем более значимой является выдвинутая нами каузальная модель. Если этот коэффициент оказывается не слишком большим, то и вклад исследуемых нами переменных в общую дисперсию зависимой переменной также оказывается незначительным. На практике, однако, часто требуется не только оценить совокупный вклад всех переменных, но и отдельный вклад каждой из рассматриваемых нами независимых переменных. Такой вклад может быть определен как корреляция части.

Как мы знаем, в случае бивариативной корреляции процент дисперсии зависимой переменной, связанный с дисперсией независимой переменной, может быть обозначен как r2. Однако часть этой дисперсии в случае исследования эффектов нескольких независимых переменных оказывается обусловлена одновременно дисперсией независимой переменной, которую мы используем в качестве контрольной. Наглядно эти соотношения показаны на рис. 9.1.

Соотношение дисперсий зависимой (Y) и двух независимых (X1 и Х2) переменных в корреляционном анализе с двумя независимыми переменными

Рис. 9.1. Соотношение дисперсий зависимой (Y) и двух независимых (X1 и Х2) переменных в корреляционном анализе с двумя независимыми переменными

Как показано на рис. 9.1, вся дисперсия Y, связанная с двумя нашими независимыми переменными, состоит из трех частей, обозначенными а, b и с. Части а и b дисперсии Y принадлежат по отдельности дисперсии двух независимых переменных – Х1 и Х2. В то же время дисперсия части с одновременно связывает и дисперсию зависимой переменной У, и дисперсию двух наших переменных X. Следовательно, для того чтобы оценить связь переменной X1 с переменной Y, которая не обусловлена влиянием переменной Х2 на переменную Y, необходимо из величины R'2 вычесть величину квадрата корреляции Y с Х2:

(9.6)

Аналогичным образом можно оценить часть корреляции У с Х2, которая не обусловлена ее корреляцией с Х1.

(9.7)

Величина sr в уравнениях (9.6) и (9.7) и есть искомая нами корреляция части.

Определить корреляцию части можно также и в терминах обычной бивариативной корреляции:

По-другому корреляция части называется полупарциальной корреляцией. Это название означает, что при расчете корреляции эффект второй независимой переменной устраняется применительно к значениям первой независимой переменной, но нс устраняется по отношению к зависимой переменной. Эффект Х1 как бы корректируется с помощью значений Х2, так что коэффициент корреляции рассчитывается не между Y и X1 а между Y и , причем значения рассчитываются на основе значений Х2 так, как было рассмотрено в главе, посвященной простой линейной регрессии (см. подпараграф 7.4.2). Таким образом, оказывается справедливым следующее соотношение:

Для того чтобы оценить корреляцию одной независимой переменной с зависимой переменной в отсутствие влияния других независимых переменных как на саму независимую переменную, так и на зависимую переменную, в регрессионном анализе используется понятие частной корреляции.

Частные корреляции

Частная, или парциальная, корреляция определяется в математической статистике через пропорцию дисперсии зависимой переменной, связанной с дисперсией данной независимой переменной, по отношению ко всей дисперсии этой зависимой переменной, не считая той ее части, которая связана с дисперсией других независимых переменных. Формально для случая двух независимых переменных это можно выразить следующим образом:

Сами значения частной корреляции рr могут быть найдены на основе значений бивариативной корреляции:

Частная корреляция, таким образом, может быть определена как обычная бивариативная корреляция между скорректированными значениями как зависимой, так и независимой переменной. Непосредственно коррекция осуществляется в соответствии со значениями независимой переменной, выступающей в качестве контрольной. Иными словами, частная корреляция между зависимой переменной Y и независимой переменной Xi может быть определена как обычная корреляция между значениями и значениями , причем значения и предсказываются на основе значений второй независимой переменной Х2.

 
< Пред   СОДЕРЖАНИЕ     След >