Меню
Главная
Авторизация/Регистрация
 
Главная arrow Экономика arrow Экономико-математические методы и прикладные модели

Решение систем линейных уравнений

Рассмотрим систему из п линейных уравнений с п неизвестными (такие системы линейных уравнений называются определенными):

(2.15)

Определитель Δ, составленный из коэффициентов при неизвестных, называют определителем системы (2.15):

Решить систему уравнений (2.15) можно различными методами, в частности методом Крамера. В основе решения системы уравнений (2.15) методом Крамера лежит следующая теорема.

Теорема Крамера. Если определитель Δ системы (2.15) отличен от нуля, то система совместна и имеет единственное решение, которое можно найти по формуле

В этой формуле является определителем, полученным из определителя системы Δ путем замены столбца у столбцом свободных членов.

Систему п линейных уравнений с п неизвестными (2.15) можно записать в матричном виде: АХ = В, где А – квадратная матрица порядка п, составленная из коэффициентов при неизвестных; X – вектор-столбец из неизвестных; В – вектор-столбец свободных членов:

Если А – невырожденная матрица, т.е. ее определитель , то можно определить . С учетом этого имеют место матричные соотношения:

(2.16)

Обратная матрица может быть определена на базе следующей теоремы.

Теорема 2.1. Если определитель матрицы А не равен нулю, то матрица А имеет обратную матрицу , которая находится по формуле

где – матрица, присоединенная к матрице А.

Матрица составляется из алгебраических дополнений к элементам транспонированной матрицы:

Таким образом, соотношение (2.16) лежит в основе решения системы уравнений (2.15) методом обратной матрицы (функция = МУМНОЖ (МОБР(Л), В) Мастера функций MS Excel).

Рассмотрим систему т линейных уравнений с п неизвестными (при m<п такие системы называются неопределенными):

(2.17)

или в векторной записи: где – соответствующие вектор-столбцы.

Запишем расширенную матрицу этой системы в виде

Элементарными преобразованиями системы (2.17) (или матрицы ) называются следующие преобразования:

  • • перестановка любых двух уравнений;
  • • умножение обеих частей одного из уравнений на любое отличное от нуля число;
  • • прибавление к обеим частям одного уравнения соответствующих частей другого, умноженных на любое число, отличное от нуля;
  • • вычеркивание нулевой строки (уравнения с нулевыми коэффициентами и свободными членом, равным 0).

Можно показать, что элементарные преобразования переводят данную систему уравнений в эквивалентную систему. Две системы линейных уравнений называются эквивалентными, или равносильными, если каждое решение первой системы (если они существуют) является решением второй, и наоборот. Соответствующие расширенные матрицы также называются эквивалентными.

При практическом решении системы линейных уравнений методом ЖорданаГаусса последовательно над строками матрицы выполняют элементарные преобразования, так что некоторое неизвестное исключается из всех уравнений, кроме одного, т.е. в составе расширенной матрицы формируется единичная подматрица.

В процессе решения могут встретиться следующие случаи.

1. Будет получена матрица , эквивалентная матрице , в левой части некоторой строки ее стоят нули, а в правой – число, отличное от нуля, что соответствует уравнению

Это признак несовместности системы (2.17), т.е. система не имеет решений.

2. В результате преобразований получилась матрица вида

В этом случае система (2.17) совместна, определенная и имеет единственное решение: .

3. На некотором этапе получилась расширенная матрица вида

Система совместна и имеет бесчисленное множество решений. Общее решение системы можно записать в виде

Придавая каждой из стоящих в правых частях равенств переменных произвольные значения, будем получать частные решения системы.

Неизвестные называются базисными, или основными, они соответствуют линейно-независимым векторам

Таким образом, любые r переменных называются базисными (основными), если определитель матрицы коэффициентов при них отличен от нуля, а остальные (п – r) переменных называются свободными, или неосновными. Базисным решением системы уравнений называется частное решение, в котором неосновные переменные имеют нулевые значения. Каждому разбиению на основные и неосновные переменные соответствует одно базисное решение, а количество способов разбиения не превышает величины

Если все компоненты базисного решения неотрицательны, то такое решение называется опорным.

Пример 2.3. Исследовать систему уравнений методом Жордана – Гаусса.

Решение. Запишем расширенную матрицу системы уравнений и последовательно преобразуем ее элементарными преобразованиями

Таким образом, система совместна, имеет бесчисленное множество решений. Общее решение записывается в виде

Любое частное решение получается из общего путем придания конкретных значений свободным переменным и . Например, (-8; 4; 8; 1; 0) – частное решение. Одно из базисных решений получаем при и , т.е. (-8; 3; 6; 0; 0).

Число базисных решений не превосходит . Перейдем к другому базисному решению, взяв в расширенной матрице в качестве базисных решений векторы ; при этом переменные будут базисными, а – свободными. Переход от одного базиса к другому осуществим методом Жордана – Гаусса, т.е. используя элементарные преобразования:

Таким образом, получено еще одно базисное решение: (-8; 0; 0; -3; 0) и т.д.

Заметим, что оба полученных базисных решения не являются опорными решениями; последнее решение является также вырожденным (базисная переменная х равна 0).

 
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Популярные страницы