Меню
Главная
Авторизация/Регистрация
 
Главная arrow Информатика arrow Информатика и информационные технологии

Системы счисления

Система счисления – способ представления чисел, опирающийся на некоторое число п знаков, называемых цифрами. Число, равное количеству знаков п, употребляемых для обозначения количества единиц каждого разряда, называется основанием системы счисления.

Происхождение наиболее распространенной десятичной системы связано с пальцевым счетом. Существовавшая в Древнем Вавилоне шестидесятиричная система осталась в делении часа и градуса угла на 60 минут и минут – на 60 секунд. В России до XVIII в. существовала десятичная система счисления, основанная на буквах алфавита а, в, г... с чертой над буквой (от греческих букв: альфа, бета, гамма).

Современная десятичная система основана на десяти цифрах, начертание которых 0, 1, 2, ..., 9 сформировалось в Индии к V в. н.э. и пришло в Европу с арабскими рукописями ("арабские цифры"). Двоичная система использует две цифры: 0 и 1. Шестнадцатиричная система использует 16 символов: 0, 1, 2, ..., 29, А, В, С, D, E, F. Эти системы счисления называются позиционными, так как значение каждой цифры числа определяется по ее месту (позиции, разряду) в ряду чисел, составляющих данное число. Позиция отсчитывается справа налево; так, в десятичной системе: нулевой разряд – разряд единиц, первый разряд – разряд десятков, второй разряд – разряд сотен, потом тысячи и т.д.

В непозиционных системах счисления цифры не меняют своего количественного значения при изменении их расположения в числе.

Например, 1 – I, 2 – II, 5 – IIIII.

Римская система счисления (I, II, III, IV, V) является смешанной, так как значение каждой цифры частично зависит от ее места (позиции) в числе. Например, IV – это 4 = 5-1, а VI – это 6 = 5 + 1.

В десятичной системе каждый разряд может показать одно из 10 значений (цифру 0, 1, 2, ..., 9). Чтобы в десятичной системе записать следующее за девяткой число, добавляют слева новый разряд и ставят в его позицию цифру 1, после нее ноль и получается 10, т.е. десять. Два разряда в десятичной системе позволяют записать сто чисел: от 0 до 99, потом придется дописывать новый разряд для числа 100.

Цифры десятичного числа определяют число по основанию системы счисления и по нумерации разрядов с помощью, например, такой формулы: 256 = 2 • 102 + 5 • 101 + 6 • 100, где значение цифры умножается на 10 в степени "разряд цифры". В числе 256 цифра 2 стоит во втором разряде и означает две сотни, поэтому умножается на 102; цифра 5 стоит в первом разряде, означает 5 десятков и умножается на 101; цифра 6 стоит в нулевом разряде и умножается на 1, т.е. на 100.

Двоичная система счисления

В двоичной системе числом в один разряд можно записать только два значения: 0 или 1, и все – возможности разряда кончились. Два разряда в двоичном числе позволяют записать четыре разных числа, а три разряда – восемь чисел. Увеличивая разрядность цифр в числе до N разрядов, можно в двоичной системе описать 2х разных чисел, сосчитать 2х объектов.

Пусть в системе счисления с основанием р записано четырехзначное число х, цифры в котором обозначим знаками с индексом внизу α3α2α1α0. Здесь а0 – знак (цифра) для нулевого разряда, a1 – для первого разряда и т.д.

Число можно представить выражением

х = а3•р3 + а2•р2 + а1•р1 + а0•р0.

Сравним запись десятичного числа 1946 = 1 • 103 + 9 • 102 + 4 • 101 + 6 • 100 и двоичного 1010 = 1 • 23 + 0 • 22 + 1 • 21 + 0 • 20. Показатель степени, в которую необходимо возвести основание р исходной системы счисления, совпадает с номером соответствующей позиции.

Так как компьютер использует двоичную систему счисления, в нем важную роль играют и часто упоминаются числа, служащие степенью числа 2, например: 8 (23), 64 (26), 128 (27), 256 (28). Самое большое 8-разрядное число с восемью двоичными единицами 11111111 = 1 • 27 + 1 • 26 + 1 • 25 + 1 • 24 + 1 • 23 + 1 • 22 + 1•21 + 1•20 равно десятичному числу 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255. Вместе с нулем получается как раз 256 целых чисел, что равно 28.

Шестнадцатиричная система – система чисел по основанию 16, использующая цифры от 0 до 9 и прописные или строчные буквы латинского алфавита от А (эквивалент десятичного числа 10) до F (эквивалент десятичного числа 15). То есть в шестнадцатиричной системе счисления знаки-цифры – 0, 1, 2, 9, А, В, С, D, E, F. Число в двоичной системе разбивается на группы по четыре двоичных знака. Одна группа дает 24 = 16 комбинаций. Десятичное число 396 в двоичной системе обозначается как 110001100, а в шестнадцатиричной системе как 18С. Соответствие десятичных, двоичных и шестнадцатиричных чисел показано в табл. 1.1.

Шестнадцатиричная система счисления применяется для обозначений адресов ячеек оперативной памяти компьютера, оттенков цвета и дает не такие длинные ряды цифр,

Таблица 1.1

Соответствие чисел: десятичные, двоичные, шестнадцатиричные

Десятичное число

Двоичное

число

Шестнадцатиричное число

Десятичное число

Двоичное

число

Шестнадцатиричное число

0

00000000

0

8

00001000

8

1

00000001

1

9

00001001

9

2

00000010

2

10

00001010

А

3

00000011

3

11

00001011

в

4

00000100

4

12

00001100

с

5

00000101

5

13

00001101

D

6

00000110

6

14

00001110

Е

7

00000111

7

15

00001111

F

16

00010000

10

как давала бы двоичная система. Иногда после шестнадцатиричного числа пишут букву h (hexamal). Например, 321 /г соответствует десятичному 801 = 3• 162 + 2•161 + 1 • 160, a FCh – это десятичное число 252 = 15 • 161 + 12 • 160.

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Популярные страницы