Меню
Главная
Авторизация/Регистрация
 
Главная arrow Статистика arrow Статистика

Средние величины

В данной главе описывается назначение средних величин, рассматриваются их основные виды и формы, методика расчета. При изучении представленного материала необходимо усвоить требования к построению средних величин, так как их соблюдение позволяет использовать эти величины как типические характеристики значений признака по совокупности однородных единиц.

Формы и виды средних величин

Средняя величина представляет собой обобщенную характеристику уровня значений признака, которая получена в расчете на единицу совокупности. В отличие от относительной величины, которая является мерой соотношения показателей, средняя величина служит мерой признака на единицу совокупности.

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности.

Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть существенные и случайные. Например, ставки процента по банковским ссудам определяются исходными для всех кредитных организаций факторами (уровень резервных требований и базовая ставка процента gо ссудам, предоставляемым коммерческим банкам центральным банком, и др.), а также особенностями каждой конкретной сделки в зависимости от риска, присущего данной ссуде, ее размера и срока погашения, издержек по оформлению ссуды и контролю за ее погашением и др.

В средней величине обобщаются индивидуальные значения признака и отражается влияние общих условий, наиболее характерных для данной совокупности в конкретных условиях места и времени. Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Средняя величина будет отражать типичный уровень признака в данной совокупности единиц, когда она рассчитана по качественно однородной совокупности. В связи с этим метод средних используют в сочетании с методом группировок.

Средние величины, характеризующие совокупность в целом, называют общими, а средние, отражающие особенность группы или подгруппы, – групповыми.

Сочетание общих и групповых средних позволяет проводить сравнения во времени и пространстве, существенно расширяет границы статистического анализа. Например, при подведении итогов переписи 2002 г. было установлено, что для России, как и для большинства европейских стран, характерно старение населения. По сравнению с переписью 1989 г. средний возраст жителей страны увеличился на три года и составил 37,7 года, мужчин – 35,2 года, женщин – 40,0 лет (по данным 1989 г. эти показатели соответственно были 34,7, 31,9 и 37,2 лет). По данным Росстата, ожидаемая продолжительность жизни при рождении в 2011 г. мужчин – 63 года, женщин – 75,6 лет.

Каждая средняя отражает особенность изучаемой совокупности по какому-то одному признаку. Для принятия практических решений, как правило, необходима характеристика совокупности по нескольким признакам. В этом случае используют систему средних величин.

Например, для достижения должного уровня доходности операций при приемлемом уровне риска банковской деятельности средние ставки процента по выданным кредитам устанавливают с учетом средних ставок процента по депозитам и другим финансовым инструментам.

Форма, вид и методика расчета средней величины зависят от поставленной цели исследования, вида и взаимосвязи изучаемых признаков, а также от характера исходных данных. Средние величины делятся на две основные категории:

  • 1) степенные средние;
  • 2) структурные средние.

Формула средней определяется значением степени применяемой средней. С увеличением показателя степени k возрастает соответственно средняя величина.

1. Средняя гармоническая ():

2. Средняя геометрическая ():

3. Средняя арифметическая ():

4. Средняя квадратическая ():

Правило мажорности средних величин следующее:

Наиболее известный и распространенный вид средней – средняя арифметическая величина. Среднюю гармоническую часто рассматривают как величину, обратную средней арифметической. Среднюю квадратическую широко используют при расчете показателей вариации, а среднюю геометрическую – при анализе динамики.

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Популярные страницы